Compare commits

...

31 Commits

Author SHA1 Message Date
Damian Schneider
76cb2e9988 Improvements to heap-memory and PSRAM handling (#4791)
* Improved heap and PSRAM handling

- Segment `allocateData()` uses more elaborate DRAM checking to reduce fragmentation and allow for larger setups to run on low heap
- Segment data allocation fails if minimum contiguous block size runs low to keep the UI working
- Increased `MAX_SEGMENT_DATA` to account for better segment data handling
- Memory allocation functions try to keep enough DRAM for segment data
- Added constant `PSRAM_THRESHOLD` to improve PSARM usage
- Increase MIN_HEAP_SIZE to reduce risk of breaking UI due to low memory for JSON response
- ESP32 makes use of IRAM (no 8bit access) for pixeluffers, freeing up to 50kB of RAM
- Fix to properly get available heap on all platforms: added function `getFreeHeapSize()`
- Bugfix for effects that divide by SEGLEN: don't run FX in service() if segment is not active
-Syntax fix in AR: calloc() uses (numelements, size) as arguments

* Added new functions for allocation and heap checking

- added `allocate_buffer()` function that can be used to allocate large buffers: takes parameters to set preferred ram location, including 32bit accessible RAM on ESP32. Returns null if heap runs low or switches to PSRAM
- getFreeHeapSize() and getContiguousFreeHeap() helper functions for all platforms to correctly report free useable heap
- updated some constants
- updated segment data allocation to free the data if it is large

- replaced "psramsafe" variable with it's #ifdef: BOARD_HAS_PSRAM and made accomodating changes
- added some compile-time checks to handle invalid env. definitions
- updated all allocation functions and some of the logic behind them
- added use of fast RTC-Memory where available
- increased MIN_HEAP_SIZE for all systems (improved stability in tests)
- updated memory calculation in web-UI to account for required segment buffer
- added UI alerts if buffer allocation fails
- made getUsedSegmentData() non-private (used in buffer alloc function)
- changed MAX_SEGMENT_DATA
- added more detailed memory log to DEBUG output
- added debug output to buffer alloc function
2025-09-16 19:46:16 +02:00
Will Tatam
9d706010f5 Update WLED app links for Android and iOS 2025-09-14 19:05:47 +01:00
Will Tatam
97b20438fd Fix typo in 'Originally' in readme.md 2025-09-14 19:03:21 +01:00
Will Tatam
65913f990d Update project title and add creator attribution 2025-09-14 18:24:19 +01:00
Will Tatam
56d00357d3 testing thanks.dev 2025-09-14 18:12:03 +01:00
netmindz
1864e550e6 Update funding to include currently active maintainers 2025-09-14 15:32:37 +01:00
Damian Schneider
75f6de9dc2 bugfix in Colortwinkles
thx @blazoncek
2025-09-09 07:31:19 +02:00
Damian Schneider
16cfbf7500 Merge pull request #4913 from DedeHai/percentFX_UI_fix
fix ancient UI bug that hides the speed slider in percent FX
2025-09-07 20:34:57 +02:00
Soeren
aecac2c56c Add CORS proxy information to README 2025-09-07 13:15:28 +02:00
Damian Schneider
385504e6db fix ancient UI bug that hides the speed slider in percent FX 2025-09-05 19:53:15 +02:00
Will Miles
a0321170d0 Merge pull request #4859 from Liliputech/udp_name_sync_rework
new usermod hooks "onUdpPacket"
2025-09-04 22:29:21 -04:00
netmindz
d70018ae9f Merge pull request #4910 from willmmiles/async-mqtt-client-dep
Un-vendor AsyncMqttClient
2025-09-04 07:33:27 +01:00
Will Miles
9359f0b7fc Fix include style 2025-09-03 23:29:24 -04:00
Will Miles
be74196a62 Un-vendor AsyncMqttClient
Switch to the upstream version.  This fixes a memory leak when
re-connection fails.
2025-09-03 23:05:20 -04:00
netmindz
705f2035f4 Change npm install to npm ci for dependencies
Updated installation instructions for dependencies.
2025-09-03 20:42:15 +01:00
Damian Schneider
65efcb351e Merge pull request #4908 from wled/copilot/fix-4788
Fix 2D matrix generator preview not updating after population
2025-09-03 20:07:54 +02:00
copilot-swe-agent[bot]
72ad39d6a7 Fix 2D matrix generator preview update issue
Co-authored-by: DedeHai <6280424+DedeHai@users.noreply.github.com>
2025-09-03 17:51:00 +00:00
copilot-swe-agent[bot]
5950204d34 Initial plan 2025-09-03 17:41:50 +00:00
netmindz
46df9410b3 Merge pull request #4900 from wled/copilot/fix-4881
Fix changelog generation to exclude unresolved closed issues
2025-09-03 07:16:45 +01:00
copilot-swe-agent[bot]
b7e4cd0d9a Fix parameter naming for changelog generator configuration
Co-authored-by: netmindz <442066+netmindz@users.noreply.github.com>
2025-09-02 07:54:14 +00:00
copilot-swe-agent[bot]
0becd61323 Fix changelog generation to exclude unresolved closed issues
Co-authored-by: netmindz <442066+netmindz@users.noreply.github.com>
2025-09-02 07:52:13 +00:00
copilot-swe-agent[bot]
3f2e92c4c5 Initial plan 2025-09-02 07:45:32 +00:00
Arthur Suzuki
c8757d45c8 fix more nitpicks comments 2025-08-30 04:12:46 +02:00
Arthur Suzuki
62fad4dcdf applied coderabbit suggestions 2025-08-30 01:52:36 +02:00
Arthur Suzuki
a60be251d2 fix nitpicks from coderabbit 2025-08-28 10:56:57 +02:00
Arthur Suzuki
f8ce5980a1 removed tabs and replace by space 2025-08-25 22:45:01 +02:00
Arthur Suzuki
4b5c3a396d applied suggestions from review 2025-08-25 22:22:51 +02:00
Arthur Suzuki
550b4d9dea fix comments for usermod hooks "onUdpPacket" 2025-08-24 15:54:45 +02:00
Liliputech
f3e3f585df usermod udp_name_sync : properly initialize packet if segment name is empty
Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
2025-08-24 13:52:39 +02:00
netmindz
2082b01a3c Apply suggestions from code review
Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
2025-08-21 08:53:11 +01:00
Arthur Suzuki
4de6656bc4 new usermod hooks "onUdpPacket"
this new hooks will help you implement new and custom protocols in
usermods.
I've provided an example (see usermods/udp_name_sync).
The example will help you share the main segment name across different
WLED instances.
The segment name can be useful to sync with some effects like GIF
image or scrolling text.

If you define new packet format in your usermod, make sure it will
either not collide with already used version of wled udp packet :
- 0 is for udp sync
- 1 is for AudioReactive data
- 2 is for udp_name_sync :)

Also, the onUdpPacket will override "parseNotification" if it returns "true".
Have fun!
2025-08-21 01:00:22 +02:00
58 changed files with 548 additions and 2156 deletions

3
.github/FUNDING.yml vendored
View File

@@ -1,2 +1,3 @@
github: [Aircoookie,blazoncek]
github: [Aircoookie,blazoncek,DedeHai,lost-hope,willmmiles]
custom: ['https://paypal.me/Aircoookie','https://paypal.me/blazoncek']
thanks_dev: u/gh/netmindz

View File

@@ -8,7 +8,7 @@ Always reference these instructions first and fallback to search or bash command
### Initial Setup
- Install Node.js 20+ (specified in `.nvmrc`): Check your version with `node --version`
- Install dependencies: `npm install` (takes ~5 seconds)
- Install dependencies: `npm ci` (takes ~5 seconds)
- Install PlatformIO for hardware builds: `pip install -r requirements.txt` (takes ~60 seconds)
### Build and Test Workflow
@@ -135,4 +135,4 @@ The GitHub Actions workflow:
4. Compiles firmware for multiple hardware targets
5. Uploads build artifacts
Match this workflow in your local development to ensure CI success.
Match this workflow in your local development to ensure CI success.

View File

@@ -27,6 +27,8 @@ jobs:
with:
token: ${{ secrets.GITHUB_TOKEN }}
sinceTag: v0.15.0
# Exclude issues that were closed without resolution from changelog
exclude-labels: 'stale,wontfix,duplicate,invalid'
- name: Update Nightly Release
uses: andelf/nightly-release@main
env:

View File

@@ -24,7 +24,9 @@ jobs:
with:
token: ${{ secrets.GITHUB_TOKEN }}
sinceTag: v0.15.0
maxIssues: 500
maxIssues: 500
# Exclude issues that were closed without resolution from changelog
exclude-labels: 'stale,wontfix,duplicate,invalid'
- name: Create draft release
uses: softprops/action-gh-release@v1
with:

View File

@@ -143,6 +143,7 @@ lib_deps =
makuna/NeoPixelBus @ 2.8.3
#https://github.com/makuna/NeoPixelBus.git#CoreShaderBeta
https://github.com/Aircoookie/ESPAsyncWebServer.git#v2.4.2
marvinroger/AsyncMqttClient @ 0.9.0
# for I2C interface
;Wire
# ESP-NOW library

View File

@@ -10,10 +10,12 @@
</p>
# Welcome to my project WLED! ✨
# Welcome to WLED! ✨
A fast and feature-rich implementation of an ESP32 and ESP8266 webserver to control NeoPixel (WS2812B, WS2811, SK6812) LEDs or also SPI based chipsets like the WS2801 and APA102!
Originally created by [Aircoookie](https://github.com/Aircoookie)
## ⚙️ Features
- WS2812FX library with more than 100 special effects
- FastLED noise effects and 50 palettes
@@ -32,7 +34,7 @@ A fast and feature-rich implementation of an ESP32 and ESP8266 webserver to cont
- Filesystem-based config for easier backup of presets and settings
## 💡 Supported light control interfaces
- WLED app for [Android](https://play.google.com/store/apps/details?id=com.aircoookie.WLED) and [iOS](https://apps.apple.com/us/app/wled/id1475695033)
- WLED app for [Android](https://play.google.com/store/apps/details?id=ca.cgagnier.wlednativeandroid) and [iOS](https://apps.apple.com/gb/app/wled-native/id6446207239)
- JSON and HTTP request APIs
- MQTT
- E1.31, Art-Net, DDP and TPM2.net
@@ -63,6 +65,7 @@ See [here](https://kno.wled.ge/basics/compatible-hardware)!
Licensed under the EUPL v1.2 license
Credits [here](https://kno.wled.ge/about/contributors/)!
CORS proxy by [Corsfix](https://corsfix.com/)
Join the Discord server to discuss everything about WLED!

View File

@@ -224,8 +224,8 @@ void FFTcode(void * parameter)
DEBUGSR_PRINT("FFT started on core: "); DEBUGSR_PRINTLN(xPortGetCoreID());
// allocate FFT buffers on first call
if (vReal == nullptr) vReal = (float*) calloc(sizeof(float), samplesFFT);
if (vImag == nullptr) vImag = (float*) calloc(sizeof(float), samplesFFT);
if (vReal == nullptr) vReal = (float*) calloc(samplesFFT, sizeof(float));
if (vImag == nullptr) vImag = (float*) calloc(samplesFFT, sizeof(float));
if ((vReal == nullptr) || (vImag == nullptr)) {
// something went wrong
if (vReal) free(vReal); vReal = nullptr;

View File

@@ -0,0 +1,5 @@
{
"name": "udp_name_sync",
"build": { "libArchive": false },
"dependencies": {}
}

View File

@@ -0,0 +1,85 @@
#include "wled.h"
class UdpNameSync : public Usermod {
private:
bool enabled = false;
char segmentName[WLED_MAX_SEGNAME_LEN] = {0};
static constexpr uint8_t kPacketType = 200; // custom usermod packet type
static const char _name[];
static const char _enabled[];
public:
/**
* Enable/Disable the usermod
*/
inline void enable(bool value) { enabled = value; }
/**
* Get usermod enabled/disabled state
*/
inline bool isEnabled() const { return enabled; }
void setup() override {
// Enabled when this usermod is compiled, set to false if you prefer runtime opt-in
enable(true);
}
void loop() override {
if (!enabled) return;
if (!WLED_CONNECTED) return;
if (!udpConnected) return;
Segment& mainseg = strip.getMainSegment();
if (segmentName[0] == '\0' && !mainseg.name) return; //name was never set, do nothing
const char* curName = mainseg.name ? mainseg.name : "";
if (strncmp(curName, segmentName, sizeof(segmentName)) == 0) return; // same name, do nothing
IPAddress broadcastIp = uint32_t(Network.localIP()) | ~uint32_t(Network.subnetMask());
byte udpOut[WLED_MAX_SEGNAME_LEN + 2];
udpOut[0] = kPacketType; // custom usermod packet type (avoid 0..5 used by core protocols)
if (segmentName[0] != '\0' && !mainseg.name) { // name cleared
notifierUdp.beginPacket(broadcastIp, udpPort);
segmentName[0] = '\0';
DEBUG_PRINTLN(F("UdpNameSync: sending empty name"));
udpOut[1] = 0; // explicit empty string
notifierUdp.write(udpOut, 2);
notifierUdp.endPacket();
return;
}
notifierUdp.beginPacket(broadcastIp, udpPort);
DEBUG_PRINT(F("UdpNameSync: saving segment name "));
DEBUG_PRINTLN(curName);
strlcpy(segmentName, curName, sizeof(segmentName));
strlcpy((char *)&udpOut[1], segmentName, sizeof(udpOut) - 1); // leave room for header byte
size_t nameLen = strnlen((char *)&udpOut[1], sizeof(udpOut) - 1);
notifierUdp.write(udpOut, 2 + nameLen);
notifierUdp.endPacket();
DEBUG_PRINT(F("UdpNameSync: Sent segment name : "));
DEBUG_PRINTLN(segmentName);
return;
}
bool onUdpPacket(uint8_t * payload, size_t len) override {
DEBUG_PRINT(F("UdpNameSync: Received packet"));
if (!enabled) return false;
if (receiveDirect) return false;
if (len < 2) return false; // need type + at least 1 byte for name (can be 0)
if (payload[0] != kPacketType) return false;
Segment& mainseg = strip.getMainSegment();
char tmp[WLED_MAX_SEGNAME_LEN] = {0};
size_t copyLen = len - 1;
if (copyLen > sizeof(tmp) - 1) copyLen = sizeof(tmp) - 1;
memcpy(tmp, &payload[1], copyLen);
tmp[copyLen] = '\0';
mainseg.setName(tmp);
DEBUG_PRINT(F("UdpNameSync: set segment name"));
return true;
}
};
static UdpNameSync udp_name_sync;
REGISTER_USERMOD(udp_name_sync);

View File

@@ -2328,7 +2328,7 @@ uint16_t mode_colortwinkle() {
}
if (cur == prev) { //fix "stuck" pixels
color_add(col, col);
col = color_add(col, col);
SEGMENT.setPixelColor(i, col);
}
else SEGMENT.setPixelColor(i, col);
@@ -3940,7 +3940,7 @@ uint16_t mode_percent(void) {
return FRAMETIME;
}
static const char _data_FX_MODE_PERCENT[] PROGMEM = "Percent@,% of fill,,,,One color;!,!;!";
static const char _data_FX_MODE_PERCENT[] PROGMEM = "Percent@!,% of fill,,,,One color;!,!;!";
/*

View File

@@ -88,23 +88,26 @@ extern byte realtimeMode; // used in getMappedPixelIndex()
#endif
#define FPS_CALC_SHIFT 7 // bit shift for fixed point math
/* each segment uses 82 bytes of SRAM memory, so if you're application fails because of
insufficient memory, decreasing MAX_NUM_SEGMENTS may help */
// heap memory limit for effects data, pixel buffers try to reserve it if PSRAM is available
#ifdef ESP8266
#define MAX_NUM_SEGMENTS 16
/* How much data bytes all segments combined may allocate */
#define MAX_SEGMENT_DATA 5120
#define MAX_SEGMENT_DATA (6*1024) // 6k by default
#elif defined(CONFIG_IDF_TARGET_ESP32S2)
#define MAX_NUM_SEGMENTS 20
#define MAX_SEGMENT_DATA (MAX_NUM_SEGMENTS*512) // 10k by default (S2 is short on free RAM)
#define MAX_NUM_SEGMENTS 32
#define MAX_SEGMENT_DATA (20*1024) // 20k by default (S2 is short on free RAM), limit does not apply if PSRAM is available
#else
#define MAX_NUM_SEGMENTS 32 // warning: going beyond 32 may consume too much RAM for stable operation
#define MAX_SEGMENT_DATA (MAX_NUM_SEGMENTS*1280) // 40k by default
#ifdef BOARD_HAS_PSRAM
#define MAX_NUM_SEGMENTS 64
#else
#define MAX_NUM_SEGMENTS 32
#endif
#define MAX_SEGMENT_DATA (64*1024) // 64k by default, limit does not apply if PSRAM is available
#endif
/* How much data bytes each segment should max allocate to leave enough space for other segments,
assuming each segment uses the same amount of data. 256 for ESP8266, 640 for ESP32. */
#define FAIR_DATA_PER_SEG (MAX_SEGMENT_DATA / WS2812FX::getMaxSegments())
#define FAIR_DATA_PER_SEG (MAX_SEGMENT_DATA / MAX_NUM_SEGMENTS)
#define MIN_SHOW_DELAY (_frametime < 16 ? 8 : 15)
@@ -533,7 +536,6 @@ class Segment {
protected:
inline static unsigned getUsedSegmentData() { return Segment::_usedSegmentData; }
inline static void addUsedSegmentData(int len) { Segment::_usedSegmentData += len; }
inline uint32_t *getPixels() const { return pixels; }
@@ -600,8 +602,8 @@ class Segment {
, _t(nullptr)
{
DEBUGFX_PRINTF_P(PSTR("-- Creating segment: %p [%d,%d:%d,%d]\n"), this, (int)start, (int)stop, (int)startY, (int)stopY);
// allocate render buffer (always entire segment)
pixels = static_cast<uint32_t*>(d_calloc(sizeof(uint32_t), length())); // error handling is also done in isActive()
// allocate render buffer (always entire segment), prefer PSRAM if DRAM is running low. Note: impact on FPS with PSRAM buffer is low (<2% with QSPI PSRAM)
pixels = static_cast<uint32_t*>(allocate_buffer(length() * sizeof(uint32_t), BFRALLOC_PREFER_PSRAM | BFRALLOC_NOBYTEACCESS | BFRALLOC_CLEAR));
if (!pixels) {
DEBUGFX_PRINTLN(F("!!! Not enough RAM for pixel buffer !!!"));
extern byte errorFlag;
@@ -623,7 +625,7 @@ class Segment {
#endif
clearName();
deallocateData();
d_free(pixels);
p_free(pixels);
}
Segment& operator= (const Segment &orig); // copy assignment
@@ -646,7 +648,7 @@ class Segment {
inline uint16_t groupLength() const { return grouping + spacing; }
inline uint8_t getLightCapabilities() const { return _capabilities; }
inline void deactivate() { setGeometry(0,0); }
inline Segment &clearName() { d_free(name); name = nullptr; return *this; }
inline Segment &clearName() { p_free(name); name = nullptr; return *this; }
inline Segment &setName(const String &name) { return setName(name.c_str()); }
inline static unsigned vLength() { return Segment::_vLength; }
@@ -672,6 +674,7 @@ class Segment {
inline uint16_t dataSize() const { return _dataLen; }
bool allocateData(size_t len); // allocates effect data buffer in heap and clears it
void deallocateData(); // deallocates (frees) effect data buffer from heap
inline static unsigned getUsedSegmentData() { return Segment::_usedSegmentData; }
/**
* Flags that before the next effect is calculated,
* the internal segment state should be reset.
@@ -868,8 +871,8 @@ class WS2812FX {
}
~WS2812FX() {
d_free(_pixels);
d_free(_pixelCCT); // just in case
p_free(_pixels);
p_free(_pixelCCT); // just in case
d_free(customMappingTable);
_mode.clear();
_modeData.clear();

89
wled00/FX_fcn.cpp Normal file → Executable file
View File

@@ -68,10 +68,10 @@ Segment::Segment(const Segment &orig) {
if (!stop) return; // nothing to do if segment is inactive/invalid
if (orig.pixels) {
// allocate pixel buffer: prefer IRAM/PSRAM
pixels = static_cast<uint32_t*>(d_malloc(sizeof(uint32_t) * orig.length()));
pixels = static_cast<uint32_t*>(allocate_buffer(orig.length() * sizeof(uint32_t), BFRALLOC_PREFER_PSRAM | BFRALLOC_NOBYTEACCESS));
if (pixels) {
memcpy(pixels, orig.pixels, sizeof(uint32_t) * orig.length());
if (orig.name) { name = static_cast<char*>(d_malloc(strlen(orig.name)+1)); if (name) strcpy(name, orig.name); }
if (orig.name) { name = static_cast<char*>(allocate_buffer(strlen(orig.name)+1, BFRALLOC_PREFER_PSRAM)); if (name) strcpy(name, orig.name); }
if (orig.data) { if (allocateData(orig._dataLen)) memcpy(data, orig.data, orig._dataLen); }
} else {
DEBUGFX_PRINTLN(F("!!! Not enough RAM for pixel buffer !!!"));
@@ -97,10 +97,10 @@ Segment& Segment::operator= (const Segment &orig) {
//DEBUG_PRINTF_P(PSTR("-- Copying segment: %p -> %p\n"), &orig, this);
if (this != &orig) {
// clean destination
if (name) { d_free(name); name = nullptr; }
if (name) { p_free(name); name = nullptr; }
if (_t) stopTransition(); // also erases _t
deallocateData();
d_free(pixels);
p_free(pixels);
// copy source
memcpy((void*)this, (void*)&orig, sizeof(Segment));
// erase pointers to allocated data
@@ -111,10 +111,10 @@ Segment& Segment::operator= (const Segment &orig) {
// copy source data
if (orig.pixels) {
// allocate pixel buffer: prefer IRAM/PSRAM
pixels = static_cast<uint32_t*>(d_malloc(sizeof(uint32_t) * orig.length()));
pixels = static_cast<uint32_t*>(allocate_buffer(orig.length() * sizeof(uint32_t), BFRALLOC_PREFER_PSRAM | BFRALLOC_NOBYTEACCESS));
if (pixels) {
memcpy(pixels, orig.pixels, sizeof(uint32_t) * orig.length());
if (orig.name) { name = static_cast<char*>(d_malloc(strlen(orig.name)+1)); if (name) strcpy(name, orig.name); }
if (orig.name) { name = static_cast<char*>(allocate_buffer(strlen(orig.name)+1, BFRALLOC_PREFER_PSRAM)); if (name) strcpy(name, orig.name); }
if (orig.data) { if (allocateData(orig._dataLen)) memcpy(data, orig.data, orig._dataLen); }
} else {
DEBUG_PRINTLN(F("!!! Not enough RAM for pixel buffer !!!"));
@@ -130,10 +130,10 @@ Segment& Segment::operator= (const Segment &orig) {
Segment& Segment::operator= (Segment &&orig) noexcept {
//DEBUG_PRINTF_P(PSTR("-- Moving segment: %p -> %p\n"), &orig, this);
if (this != &orig) {
if (name) { d_free(name); name = nullptr; } // free old name
if (name) { p_free(name); name = nullptr; } // free old name
if (_t) stopTransition(); // also erases _t
deallocateData(); // free old runtime data
d_free(pixels); // free old pixel buffer
p_free(pixels); // free old pixel buffer
// move source data
memcpy((void*)this, (void*)&orig, sizeof(Segment));
orig.name = nullptr;
@@ -147,35 +147,38 @@ Segment& Segment::operator= (Segment &&orig) noexcept {
// allocates effect data buffer on heap and initialises (erases) it
bool Segment::allocateData(size_t len) {
if (len == 0) return false; // nothing to do
if (data && _dataLen >= len) { // already allocated enough (reduce fragmentation)
if (len == 0) return false; // nothing to do
if (data && _dataLen >= len) { // already allocated enough (reduce fragmentation)
if (call == 0) {
//DEBUG_PRINTF_P(PSTR("-- Clearing data (%d): %p\n"), len, this);
memset(data, 0, len); // erase buffer if called during effect initialisation
if (_dataLen < FAIR_DATA_PER_SEG) { // segment data is small
//DEBUG_PRINTF_P(PSTR("-- Clearing data (%d): %p\n"), len, this);
memset(data, 0, len); // erase buffer if called during effect initialisation
return true; // no need to reallocate
}
}
return true;
else
return true;
}
//DEBUG_PRINTF_P(PSTR("-- Allocating data (%d): %p\n"), len, this);
// limit to MAX_SEGMENT_DATA if there is no PSRAM, otherwise prefer functionality over speed
#ifndef BOARD_HAS_PSRAM
if (Segment::getUsedSegmentData() + len - _dataLen > MAX_SEGMENT_DATA) {
// not enough memory
DEBUG_PRINTF_P(PSTR("!!! Not enough RAM: %d/%d !!!\n"), len, Segment::getUsedSegmentData());
DEBUG_PRINTF_P(PSTR("SegmentData limit reached: %d/%d\n"), len, Segment::getUsedSegmentData());
errorFlag = ERR_NORAM;
return false;
}
// prefer DRAM over SPI RAM on ESP32 since it is slow
if (data) {
data = (byte*)d_realloc_malloc(data, len); // realloc with malloc fallback
if (!data) {
data = nullptr;
Segment::addUsedSegmentData(-_dataLen); // subtract original buffer size
_dataLen = 0; // reset data length
}
}
else data = (byte*)d_malloc(len);
#endif
if (data) {
memset(data, 0, len); // erase buffer
Segment::addUsedSegmentData(len - _dataLen);
d_free(data); // free data and try to allocate again (segment buffer may be blocking contiguous heap)
Segment::addUsedSegmentData(-_dataLen); // subtract buffer size
}
data = static_cast<byte*>(allocate_buffer(len, BFRALLOC_PREFER_DRAM | BFRALLOC_CLEAR)); // prefer DRAM over PSRAM for speed
if (data) {
Segment::addUsedSegmentData(len);
_dataLen = len;
//DEBUG_PRINTF_P(PSTR("--- Allocated data (%p): %d/%d -> %p\n"), this, len, Segment::getUsedSegmentData(), data);
return true;
@@ -209,7 +212,11 @@ void Segment::deallocateData() {
void Segment::resetIfRequired() {
if (!reset || !isActive()) return;
//DEBUG_PRINTF_P(PSTR("-- Segment reset: %p\n"), this);
if (data && _dataLen > 0) memset(data, 0, _dataLen); // prevent heap fragmentation (just erase buffer instead of deallocateData())
if (data && _dataLen > 0) {
if (_dataLen > FAIR_DATA_PER_SEG) deallocateData(); // do not keep large allocations
else memset(data, 0, _dataLen); // can prevent heap fragmentation
DEBUG_PRINTF_P(PSTR("-- Segment %p reset, data cleared\n"), this);
}
if (pixels) for (size_t i = 0; i < length(); i++) pixels[i] = BLACK; // clear pixel buffer
next_time = 0; step = 0; call = 0; aux0 = 0; aux1 = 0;
reset = false;
@@ -466,7 +473,7 @@ void Segment::setGeometry(uint16_t i1, uint16_t i2, uint8_t grp, uint8_t spc, ui
if (length() != oldLength) {
// allocate render buffer (always entire segment), prefer IRAM/PSRAM. Note: impact on FPS with PSRAM buffer is low (<2% with QSPI PSRAM) on S2/S3
p_free(pixels);
pixels = static_cast<uint32_t*>(d_malloc(sizeof(uint32_t) * length()));
pixels = static_cast<uint32_t*>(allocate_buffer(length() * sizeof(uint32_t), BFRALLOC_PREFER_PSRAM | BFRALLOC_NOBYTEACCESS));
if (!pixels) {
DEBUGFX_PRINTLN(F("!!! Not enough RAM for pixel buffer !!!"));
deallocateData();
@@ -581,8 +588,8 @@ Segment &Segment::setName(const char *newName) {
if (newName) {
const int newLen = min(strlen(newName), (size_t)WLED_MAX_SEGNAME_LEN);
if (newLen) {
if (name) d_free(name); // free old name
name = static_cast<char*>(d_malloc(newLen+1));
if (name) p_free(name); // free old name
name = static_cast<char*>(allocate_buffer(newLen+1, BFRALLOC_PREFER_PSRAM));
if (mode == FX_MODE_2DSCROLLTEXT) startTransition(strip.getTransition(), true); // if the name changes in scrolling text mode, we need to copy the segment for blending
if (name) strlcpy(name, newName, newLen+1);
return *this;
@@ -1177,7 +1184,10 @@ void WS2812FX::finalizeInit() {
mem += bus.memUsage(Bus::isDigital(bus.type) && !Bus::is2Pin(bus.type) ? digitalCount++ : 0); // includes global buffer
if (mem <= MAX_LED_MEMORY) {
if (BusManager::add(bus) == -1) break;
} else DEBUG_PRINTF_P(PSTR("Out of LED memory! Bus %d (%d) #%u not created."), (int)bus.type, (int)bus.count, digitalCount);
} else {
errorFlag = ERR_NORAM_PX; // alert UI
DEBUG_PRINTF_P(PSTR("Out of LED memory! Bus %d (%d) #%u not created."), (int)bus.type, (int)bus.count, digitalCount);
}
}
busConfigs.clear();
busConfigs.shrink_to_fit();
@@ -1209,10 +1219,11 @@ void WS2812FX::finalizeInit() {
deserializeMap(); // (re)load default ledmap (will also setUpMatrix() if ledmap does not exist)
// allocate frame buffer after matrix has been set up (gaps!)
d_free(_pixels); // using realloc on large buffers can cause additional fragmentation instead of reducing it
_pixels = static_cast<uint32_t*>(d_malloc(getLengthTotal() * sizeof(uint32_t)));
p_free(_pixels); // using realloc on large buffers can cause additional fragmentation instead of reducing it
// use PSRAM if available: there is no measurable perfomance impact between PSRAM and DRAM on S2/S3 with QSPI PSRAM for this buffer
_pixels = static_cast<uint32_t*>(allocate_buffer(getLengthTotal() * sizeof(uint32_t), BFRALLOC_ENFORCE_PSRAM | BFRALLOC_NOBYTEACCESS | BFRALLOC_CLEAR));
DEBUG_PRINTF_P(PSTR("strip buffer size: %uB\n"), getLengthTotal() * sizeof(uint32_t));
DEBUG_PRINTF_P(PSTR("Heap after strip init: %uB\n"), ESP.getFreeHeap());
DEBUG_PRINTF_P(PSTR("Heap after strip init: %uB\n"), getFreeHeapSize());
}
void WS2812FX::service() {
@@ -1552,7 +1563,11 @@ void WS2812FX::blendSegment(const Segment &topSegment) const {
}
void WS2812FX::show() {
if (!_pixels) return; // no pixels allocated, nothing to show
if (!_pixels) {
DEBUGFX_PRINTLN(F("Error: no _pixels!"));
errorFlag = ERR_NORAM;
return; // no pixels allocated, nothing to show
}
unsigned long showNow = millis();
size_t diff = showNow - _lastShow;
@@ -1562,7 +1577,7 @@ void WS2812FX::show() {
// we need to keep track of each pixel's CCT when blending segments (if CCT is present)
// and then set appropriate CCT from that pixel during paint (see below).
if ((hasCCTBus() || correctWB) && !cctFromRgb)
_pixelCCT = static_cast<uint8_t*>(d_malloc(totalLen * sizeof(uint8_t))); // allocate CCT buffer if necessary
_pixelCCT = static_cast<uint8_t*>(allocate_buffer(totalLen * sizeof(uint8_t), BFRALLOC_PREFER_PSRAM)); // allocate CCT buffer if necessary, prefer PSRAM
if (_pixelCCT) memset(_pixelCCT, 127, totalLen); // set neutral (50:50) CCT
if (realtimeMode == REALTIME_MODE_INACTIVE || useMainSegmentOnly || realtimeOverride > REALTIME_OVERRIDE_NONE) {
@@ -1596,7 +1611,7 @@ void WS2812FX::show() {
}
Bus::setCCT(oldCCT); // restore old CCT for ABL adjustments
d_free(_pixelCCT);
p_free(_pixelCCT);
_pixelCCT = nullptr;
// some buses send asynchronously and this method will return before

View File

@@ -39,35 +39,29 @@ uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, const byte *buffer, uint8_t bri=255, bool isRGBW=false);
//util.cpp
// PSRAM allocation wrappers
#if !defined(ESP8266) && !defined(CONFIG_IDF_TARGET_ESP32C3)
// memory allocation wrappers
extern "C" {
void *p_malloc(size_t); // prefer PSRAM over DRAM
void *p_calloc(size_t, size_t); // prefer PSRAM over DRAM
void *p_realloc(void *, size_t); // prefer PSRAM over DRAM
void *p_realloc_malloc(void *ptr, size_t size); // realloc with malloc fallback, prefer PSRAM over DRAM
inline void p_free(void *ptr) { heap_caps_free(ptr); }
void *d_malloc(size_t); // prefer DRAM over PSRAM
void *d_calloc(size_t, size_t); // prefer DRAM over PSRAM
void *d_realloc(void *, size_t); // prefer DRAM over PSRAM
void *d_realloc_malloc(void *ptr, size_t size); // realloc with malloc fallback, prefer DRAM over PSRAM
// prefer DRAM over PSRAM (if available) in d_ alloc functions
void *d_malloc(size_t);
void *d_calloc(size_t, size_t);
void *d_realloc_malloc(void *ptr, size_t size);
#ifndef ESP8266
inline void d_free(void *ptr) { heap_caps_free(ptr); }
#else
inline void d_free(void *ptr) { free(ptr); }
#endif
#if defined(BOARD_HAS_PSRAM)
// prefer PSRAM over DRAM in p_ alloc functions
void *p_malloc(size_t);
void *p_calloc(size_t, size_t);
void *p_realloc_malloc(void *ptr, size_t size);
inline void p_free(void *ptr) { heap_caps_free(ptr); }
#else
#define p_malloc d_malloc
#define p_calloc d_calloc
#define p_free d_free
#endif
}
#else
extern "C" {
void *realloc_malloc(void *ptr, size_t size);
}
#define p_malloc malloc
#define p_calloc calloc
#define p_realloc realloc
#define p_realloc_malloc realloc_malloc
#define p_free free
#define d_malloc malloc
#define d_calloc calloc
#define d_realloc realloc
#define d_realloc_malloc realloc_malloc
#define d_free free
#endif
//color mangling macros
#define RGBW32(r,g,b,w) (uint32_t((byte(w) << 24) | (byte(r) << 16) | (byte(g) << 8) | (byte(b))))
@@ -902,7 +896,7 @@ void BusManager::esp32RMTInvertIdle() {
else if (lvl == RMT_IDLE_LEVEL_LOW) lvl = RMT_IDLE_LEVEL_HIGH;
else continue;
rmt_set_idle_level(ch, idle_out, lvl);
u++
u++;
}
}
#endif

View File

@@ -201,7 +201,7 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
}
#endif
DEBUG_PRINTF_P(PSTR("Heap before buses: %d\n"), ESP.getFreeHeap());
DEBUG_PRINTF_P(PSTR("Heap before buses: %d\n"), getFreeHeapSize());
JsonArray ins = hw_led["ins"];
if (!ins.isNull()) {
int s = 0; // bus iterator

View File

@@ -546,8 +546,21 @@ static_assert(WLED_MAX_BUSSES <= 32, "WLED_MAX_BUSSES exceeds hard limit");
#endif
#endif
// minimum heap size required to process web requests
#define MIN_HEAP_SIZE 8192
// minimum heap size required to process web requests: try to keep free heap above this value
#ifdef ESP8266
#define MIN_HEAP_SIZE (9*1024)
#else
#define MIN_HEAP_SIZE (15*1024) // WLED allocation functions (util.cpp) try to keep this much contiguous heap free for other tasks
#endif
// threshold for PSRAM use: if heap is running low, requests to allocate_buffer(prefer DRAM) above PSRAM_THRESHOLD may be put in PSRAM
// if heap is depleted, PSRAM will be used regardless of threshold
#if defined(CONFIG_IDF_TARGET_ESP32S3)
#define PSRAM_THRESHOLD (12*1024) // S3 has plenty of DRAM
#elif defined(CONFIG_IDF_TARGET_ESP32)
#define PSRAM_THRESHOLD (5*1024)
#else
#define PSRAM_THRESHOLD (2*1024) // S2 does not have a lot of RAM. C3 and ESP8266 do not support PSRAM: the value is not used
#endif
// Web server limits
#ifdef ESP8266

View File

@@ -107,6 +107,7 @@ Y: <input name="P${i}Y" type="number" min="0" max="255" value="0" oninput="UI()"
Sf[`P${p}H`].value = ph;
}
}
UI(); // Update the preview after generating panels
}
function expand(o,i)

View File

@@ -195,7 +195,6 @@
if (isAna(t)) return 5; // analog
let len = parseInt(d.getElementsByName("LC"+n)[0].value);
len += parseInt(d.getElementsByName("SL"+n)[0].value); // skipped LEDs are allocated too
let dbl = 0;
let ch = 3*hasRGB(t) + hasW(t) + hasCCT(t);
let mul = 1;
if (isDig(t)) {
@@ -207,7 +206,7 @@
mul = 2;
}
}
return len * ch * mul + dbl;
return len * ch * mul + len * 4; // add 4 bytes per LED for segment buffer (TODO: how to account for global buffer?)
}
function UI(change=false)

View File

@@ -315,6 +315,7 @@ class Usermod {
virtual void onMqttConnect(bool sessionPresent) {} // fired when MQTT connection is established (so usermod can subscribe)
virtual bool onMqttMessage(char* topic, char* payload) { return false; } // fired upon MQTT message received (wled topic)
virtual bool onEspNowMessage(uint8_t* sender, uint8_t* payload, uint8_t len) { return false; } // fired upon ESP-NOW message received
virtual bool onUdpPacket(uint8_t* payload, size_t len) { return false; } //fired upon UDP packet received
virtual void onUpdateBegin(bool) {} // fired prior to and after unsuccessful firmware update
virtual void onStateChange(uint8_t mode) {} // fired upon WLED state change
virtual uint16_t getId() {return USERMOD_ID_UNSPECIFIED;}
@@ -354,6 +355,7 @@ namespace UsermodManager {
#ifndef WLED_DISABLE_ESPNOW
bool onEspNowMessage(uint8_t* sender, uint8_t* payload, uint8_t len);
#endif
bool onUdpPacket(uint8_t* payload, size_t len);
void onUpdateBegin(bool);
void onStateChange(uint8_t);
Usermod* lookup(uint16_t mod_id);
@@ -432,35 +434,44 @@ inline uint8_t hw_random8() { return HW_RND_REGISTER; };
inline uint8_t hw_random8(uint32_t upperlimit) { return (hw_random8() * upperlimit) >> 8; }; // input range 0-255
inline uint8_t hw_random8(uint32_t lowerlimit, uint32_t upperlimit) { uint32_t range = upperlimit - lowerlimit; return lowerlimit + hw_random8(range); }; // input range 0-255
// PSRAM allocation wrappers
#if !defined(ESP8266) && !defined(CONFIG_IDF_TARGET_ESP32C3)
// memory allocation wrappers (util.cpp)
extern "C" {
void *p_malloc(size_t); // prefer PSRAM over DRAM
void *p_calloc(size_t, size_t); // prefer PSRAM over DRAM
void *p_realloc(void *, size_t); // prefer PSRAM over DRAM
void *p_realloc_malloc(void *ptr, size_t size); // realloc with malloc fallback, prefer PSRAM over DRAM
inline void p_free(void *ptr) { heap_caps_free(ptr); }
void *d_malloc(size_t); // prefer DRAM over PSRAM
void *d_calloc(size_t, size_t); // prefer DRAM over PSRAM
void *d_realloc(void *, size_t); // prefer DRAM over PSRAM
void *d_realloc_malloc(void *ptr, size_t size); // realloc with malloc fallback, prefer DRAM over PSRAM
// prefer DRAM in d_xalloc functions, PSRAM as fallback
void *d_malloc(size_t);
void *d_calloc(size_t, size_t);
void *d_realloc_malloc(void *ptr, size_t size);
#ifndef ESP8266
inline void d_free(void *ptr) { heap_caps_free(ptr); }
#else
inline void d_free(void *ptr) { free(ptr); }
#endif
#if defined(BOARD_HAS_PSRAM)
// prefer PSRAM in p_xalloc functions, DRAM as fallback
void *p_malloc(size_t);
void *p_calloc(size_t, size_t);
void *p_realloc_malloc(void *ptr, size_t size);
inline void p_free(void *ptr) { heap_caps_free(ptr); }
#else
#define p_malloc d_malloc
#define p_calloc d_calloc
#define p_realloc_malloc d_realloc_malloc
#define p_free d_free
#endif
}
#ifndef ESP8266
inline size_t getFreeHeapSize() { return heap_caps_get_free_size(MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); } // returns free heap (ESP.getFreeHeap() can include other memory types)
inline size_t getContiguousFreeHeap() { return heap_caps_get_largest_free_block(MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); } // returns largest contiguous free block
#else
extern "C" {
void *realloc_malloc(void *ptr, size_t size);
}
#define p_malloc malloc
#define p_calloc calloc
#define p_realloc realloc
#define p_realloc_malloc realloc_malloc
#define p_free free
#define d_malloc malloc
#define d_calloc calloc
#define d_realloc realloc
#define d_realloc_malloc realloc_malloc
#define d_free free
inline size_t getFreeHeapSize() { return ESP.getFreeHeap(); } // returns free heap
inline size_t getContiguousFreeHeap() { return ESP.getMaxFreeBlockSize(); } // returns largest contiguous free block
#endif
#define BFRALLOC_NOBYTEACCESS (1 << 0) // ESP32 has 32bit accessible DRAM (usually ~50kB free) that must not be byte-accessed
#define BFRALLOC_PREFER_DRAM (1 << 1) // prefer DRAM over PSRAM
#define BFRALLOC_ENFORCE_DRAM (1 << 2) // use DRAM only, no PSRAM
#define BFRALLOC_PREFER_PSRAM (1 << 3) // prefer PSRAM over DRAM
#define BFRALLOC_ENFORCE_PSRAM (1 << 4) // use PSRAM if available, otherwise uses DRAM
#define BFRALLOC_CLEAR (1 << 5) // clear allocated buffer after allocation
void *allocate_buffer(size_t size, uint32_t type);
void handleBootLoop(); // detect and handle bootloops
#ifndef ESP8266

View File

@@ -422,8 +422,8 @@ bool handleFileRead(AsyncWebServerRequest* request, String path){
DEBUGFS_PRINT(F("WS FileRead: ")); DEBUGFS_PRINTLN(path);
if(path.endsWith("/")) path += "index.htm";
if(path.indexOf(F("sec")) > -1) return false;
#ifdef ARDUINO_ARCH_ESP32
if (psramSafe && psramFound() && path.endsWith(FPSTR(getPresetsFileName()))) {
#ifdef BOARD_HAS_PSRAM
if (path.endsWith(FPSTR(getPresetsFileName()))) {
size_t psize;
const uint8_t *presets = getPresetCache(psize);
if (presets) {

View File

@@ -812,7 +812,7 @@ void serializeInfo(JsonObject root)
root[F("clock")] = ESP.getCpuFreqMHz();
root[F("flash")] = (ESP.getFlashChipSize()/1024)/1024;
#ifdef WLED_DEBUG
root[F("maxalloc")] = ESP.getMaxAllocHeap();
root[F("maxalloc")] = getContiguousFreeHeap();
root[F("resetReason0")] = (int)rtc_get_reset_reason(0);
root[F("resetReason1")] = (int)rtc_get_reset_reason(1);
#endif
@@ -823,15 +823,15 @@ void serializeInfo(JsonObject root)
root[F("clock")] = ESP.getCpuFreqMHz();
root[F("flash")] = (ESP.getFlashChipSize()/1024)/1024;
#ifdef WLED_DEBUG
root[F("maxalloc")] = ESP.getMaxFreeBlockSize();
root[F("maxalloc")] = getContiguousFreeHeap();
root[F("resetReason")] = (int)ESP.getResetInfoPtr()->reason;
#endif
root[F("lwip")] = LWIP_VERSION_MAJOR;
#endif
root[F("freeheap")] = ESP.getFreeHeap();
#if defined(ARDUINO_ARCH_ESP32)
if (psramFound()) root[F("psram")] = ESP.getFreePsram();
root[F("freeheap")] = getFreeHeapSize();
#if defined(BOARD_HAS_PSRAM)
root[F("psram")] = ESP.getFreePsram();
#endif
root[F("uptime")] = millis()/1000 + rolloverMillis*4294967;

View File

@@ -1,877 +0,0 @@
#include "AsyncMqttClient.hpp"
AsyncMqttClient::AsyncMqttClient()
: _connected(false)
, _connectPacketNotEnoughSpace(false)
, _disconnectFlagged(false)
, _tlsBadFingerprint(false)
, _lastClientActivity(0)
, _lastServerActivity(0)
, _lastPingRequestTime(0)
, _host(nullptr)
, _useIp(false)
#if ASYNC_TCP_SSL_ENABLED
, _secure(false)
#endif
, _port(0)
, _keepAlive(15)
, _cleanSession(true)
, _clientId(nullptr)
, _username(nullptr)
, _password(nullptr)
, _willTopic(nullptr)
, _willPayload(nullptr)
, _willPayloadLength(0)
, _willQos(0)
, _willRetain(false)
, _parsingInformation { .bufferState = AsyncMqttClientInternals::BufferState::NONE }
, _currentParsedPacket(nullptr)
, _remainingLengthBufferPosition(0)
, _nextPacketId(1) {
_client.onConnect([](void* obj, AsyncClient* c) { (static_cast<AsyncMqttClient*>(obj))->_onConnect(c); }, this);
_client.onDisconnect([](void* obj, AsyncClient* c) { (static_cast<AsyncMqttClient*>(obj))->_onDisconnect(c); }, this);
_client.onError([](void* obj, AsyncClient* c, int8_t error) { (static_cast<AsyncMqttClient*>(obj))->_onError(c, error); }, this);
_client.onTimeout([](void* obj, AsyncClient* c, uint32_t time) { (static_cast<AsyncMqttClient*>(obj))->_onTimeout(c, time); }, this);
_client.onAck([](void* obj, AsyncClient* c, size_t len, uint32_t time) { (static_cast<AsyncMqttClient*>(obj))->_onAck(c, len, time); }, this);
_client.onData([](void* obj, AsyncClient* c, void* data, size_t len) { (static_cast<AsyncMqttClient*>(obj))->_onData(c, static_cast<char*>(data), len); }, this);
_client.onPoll([](void* obj, AsyncClient* c) { (static_cast<AsyncMqttClient*>(obj))->_onPoll(c); }, this);
#ifdef ESP32
sprintf(_generatedClientId, "esp32%06x", (uint32_t)ESP.getEfuseMac());
_xSemaphore = xSemaphoreCreateMutex();
#elif defined(ESP8266)
sprintf(_generatedClientId, "esp8266%06x", (uint32_t)ESP.getChipId());
#endif
_clientId = _generatedClientId;
setMaxTopicLength(128);
}
AsyncMqttClient::~AsyncMqttClient() {
delete _currentParsedPacket;
delete[] _parsingInformation.topicBuffer;
#ifdef ESP32
vSemaphoreDelete(_xSemaphore);
#endif
}
AsyncMqttClient& AsyncMqttClient::setKeepAlive(uint16_t keepAlive) {
_keepAlive = keepAlive;
return *this;
}
AsyncMqttClient& AsyncMqttClient::setClientId(const char* clientId) {
_clientId = clientId;
return *this;
}
AsyncMqttClient& AsyncMqttClient::setCleanSession(bool cleanSession) {
_cleanSession = cleanSession;
return *this;
}
AsyncMqttClient& AsyncMqttClient::setMaxTopicLength(uint16_t maxTopicLength) {
_parsingInformation.maxTopicLength = maxTopicLength;
delete[] _parsingInformation.topicBuffer;
_parsingInformation.topicBuffer = new char[maxTopicLength + 1];
return *this;
}
AsyncMqttClient& AsyncMqttClient::setCredentials(const char* username, const char* password) {
_username = username;
_password = password;
return *this;
}
AsyncMqttClient& AsyncMqttClient::setWill(const char* topic, uint8_t qos, bool retain, const char* payload, size_t length) {
_willTopic = topic;
_willQos = qos;
_willRetain = retain;
_willPayload = payload;
_willPayloadLength = length;
return *this;
}
AsyncMqttClient& AsyncMqttClient::setServer(IPAddress ip, uint16_t port) {
_useIp = true;
_ip = ip;
_port = port;
return *this;
}
AsyncMqttClient& AsyncMqttClient::setServer(const char* host, uint16_t port) {
_useIp = false;
_host = host;
_port = port;
return *this;
}
#if ASYNC_TCP_SSL_ENABLED
AsyncMqttClient& AsyncMqttClient::setSecure(bool secure) {
_secure = secure;
return *this;
}
AsyncMqttClient& AsyncMqttClient::addServerFingerprint(const uint8_t* fingerprint) {
std::array<uint8_t, SHA1_SIZE> newFingerprint;
memcpy(newFingerprint.data(), fingerprint, SHA1_SIZE);
_secureServerFingerprints.push_back(newFingerprint);
return *this;
}
#endif
AsyncMqttClient& AsyncMqttClient::onConnect(AsyncMqttClientInternals::OnConnectUserCallback callback) {
_onConnectUserCallbacks.push_back(callback);
return *this;
}
AsyncMqttClient& AsyncMqttClient::onDisconnect(AsyncMqttClientInternals::OnDisconnectUserCallback callback) {
_onDisconnectUserCallbacks.push_back(callback);
return *this;
}
AsyncMqttClient& AsyncMqttClient::onSubscribe(AsyncMqttClientInternals::OnSubscribeUserCallback callback) {
_onSubscribeUserCallbacks.push_back(callback);
return *this;
}
AsyncMqttClient& AsyncMqttClient::onUnsubscribe(AsyncMqttClientInternals::OnUnsubscribeUserCallback callback) {
_onUnsubscribeUserCallbacks.push_back(callback);
return *this;
}
AsyncMqttClient& AsyncMqttClient::onMessage(AsyncMqttClientInternals::OnMessageUserCallback callback) {
_onMessageUserCallbacks.push_back(callback);
return *this;
}
AsyncMqttClient& AsyncMqttClient::onPublish(AsyncMqttClientInternals::OnPublishUserCallback callback) {
_onPublishUserCallbacks.push_back(callback);
return *this;
}
void AsyncMqttClient::_freeCurrentParsedPacket() {
delete _currentParsedPacket;
_currentParsedPacket = nullptr;
}
void AsyncMqttClient::_clear() {
_lastPingRequestTime = 0;
_connected = false;
_disconnectFlagged = false;
_connectPacketNotEnoughSpace = false;
_tlsBadFingerprint = false;
_freeCurrentParsedPacket();
_pendingPubRels.clear();
_pendingPubRels.shrink_to_fit();
_toSendAcks.clear();
_toSendAcks.shrink_to_fit();
_nextPacketId = 1;
_parsingInformation.bufferState = AsyncMqttClientInternals::BufferState::NONE;
}
/* TCP */
void AsyncMqttClient::_onConnect(AsyncClient* client) {
(void)client;
#if ASYNC_TCP_SSL_ENABLED
if (_secure && _secureServerFingerprints.size() > 0) {
SSL* clientSsl = _client.getSSL();
bool sslFoundFingerprint = false;
for (std::array<uint8_t, SHA1_SIZE> fingerprint : _secureServerFingerprints) {
if (ssl_match_fingerprint(clientSsl, fingerprint.data()) == SSL_OK) {
sslFoundFingerprint = true;
break;
}
}
if (!sslFoundFingerprint) {
_tlsBadFingerprint = true;
_client.close(true);
return;
}
}
#endif
char fixedHeader[5];
fixedHeader[0] = AsyncMqttClientInternals::PacketType.CONNECT;
fixedHeader[0] = fixedHeader[0] << 4;
fixedHeader[0] = fixedHeader[0] | AsyncMqttClientInternals::HeaderFlag.CONNECT_RESERVED;
uint16_t protocolNameLength = 4;
char protocolNameLengthBytes[2];
protocolNameLengthBytes[0] = protocolNameLength >> 8;
protocolNameLengthBytes[1] = protocolNameLength & 0xFF;
char protocolLevel[1];
protocolLevel[0] = 0x04;
char connectFlags[1];
connectFlags[0] = 0;
if (_cleanSession) connectFlags[0] |= AsyncMqttClientInternals::ConnectFlag.CLEAN_SESSION;
if (_username != nullptr) connectFlags[0] |= AsyncMqttClientInternals::ConnectFlag.USERNAME;
if (_password != nullptr) connectFlags[0] |= AsyncMqttClientInternals::ConnectFlag.PASSWORD;
if (_willTopic != nullptr) {
connectFlags[0] |= AsyncMqttClientInternals::ConnectFlag.WILL;
if (_willRetain) connectFlags[0] |= AsyncMqttClientInternals::ConnectFlag.WILL_RETAIN;
switch (_willQos) {
case 0:
connectFlags[0] |= AsyncMqttClientInternals::ConnectFlag.WILL_QOS0;
break;
case 1:
connectFlags[0] |= AsyncMqttClientInternals::ConnectFlag.WILL_QOS1;
break;
case 2:
connectFlags[0] |= AsyncMqttClientInternals::ConnectFlag.WILL_QOS2;
break;
}
}
char keepAliveBytes[2];
keepAliveBytes[0] = _keepAlive >> 8;
keepAliveBytes[1] = _keepAlive & 0xFF;
uint16_t clientIdLength = strlen(_clientId);
char clientIdLengthBytes[2];
clientIdLengthBytes[0] = clientIdLength >> 8;
clientIdLengthBytes[1] = clientIdLength & 0xFF;
// Optional fields
uint16_t willTopicLength = 0;
char willTopicLengthBytes[2];
uint16_t willPayloadLength = _willPayloadLength;
char willPayloadLengthBytes[2];
if (_willTopic != nullptr) {
willTopicLength = strlen(_willTopic);
willTopicLengthBytes[0] = willTopicLength >> 8;
willTopicLengthBytes[1] = willTopicLength & 0xFF;
if (_willPayload != nullptr && willPayloadLength == 0) willPayloadLength = strlen(_willPayload);
willPayloadLengthBytes[0] = willPayloadLength >> 8;
willPayloadLengthBytes[1] = willPayloadLength & 0xFF;
}
uint16_t usernameLength = 0;
char usernameLengthBytes[2];
if (_username != nullptr) {
usernameLength = strlen(_username);
usernameLengthBytes[0] = usernameLength >> 8;
usernameLengthBytes[1] = usernameLength & 0xFF;
}
uint16_t passwordLength = 0;
char passwordLengthBytes[2];
if (_password != nullptr) {
passwordLength = strlen(_password);
passwordLengthBytes[0] = passwordLength >> 8;
passwordLengthBytes[1] = passwordLength & 0xFF;
}
uint32_t remainingLength = 2 + protocolNameLength + 1 + 1 + 2 + 2 + clientIdLength; // always present
if (_willTopic != nullptr) remainingLength += 2 + willTopicLength + 2 + willPayloadLength;
if (_username != nullptr) remainingLength += 2 + usernameLength;
if (_password != nullptr) remainingLength += 2 + passwordLength;
uint8_t remainingLengthLength = AsyncMqttClientInternals::Helpers::encodeRemainingLength(remainingLength, fixedHeader + 1);
uint32_t neededSpace = 1 + remainingLengthLength;
neededSpace += 2;
neededSpace += protocolNameLength;
neededSpace += 1;
neededSpace += 1;
neededSpace += 2;
neededSpace += 2;
neededSpace += clientIdLength;
if (_willTopic != nullptr) {
neededSpace += 2;
neededSpace += willTopicLength;
neededSpace += 2;
if (_willPayload != nullptr) neededSpace += willPayloadLength;
}
if (_username != nullptr) {
neededSpace += 2;
neededSpace += usernameLength;
}
if (_password != nullptr) {
neededSpace += 2;
neededSpace += passwordLength;
}
SEMAPHORE_TAKE();
if (_client.space() < neededSpace) {
_connectPacketNotEnoughSpace = true;
_client.close(true);
SEMAPHORE_GIVE();
return;
}
_client.add(fixedHeader, 1 + remainingLengthLength);
_client.add(protocolNameLengthBytes, 2);
_client.add("MQTT", protocolNameLength);
_client.add(protocolLevel, 1);
_client.add(connectFlags, 1);
_client.add(keepAliveBytes, 2);
_client.add(clientIdLengthBytes, 2);
_client.add(_clientId, clientIdLength);
if (_willTopic != nullptr) {
_client.add(willTopicLengthBytes, 2);
_client.add(_willTopic, willTopicLength);
_client.add(willPayloadLengthBytes, 2);
if (_willPayload != nullptr) _client.add(_willPayload, willPayloadLength);
}
if (_username != nullptr) {
_client.add(usernameLengthBytes, 2);
_client.add(_username, usernameLength);
}
if (_password != nullptr) {
_client.add(passwordLengthBytes, 2);
_client.add(_password, passwordLength);
}
_client.send();
_lastClientActivity = millis();
SEMAPHORE_GIVE();
}
void AsyncMqttClient::_onDisconnect(AsyncClient* client) {
(void)client;
if (!_disconnectFlagged) {
AsyncMqttClientDisconnectReason reason;
if (_connectPacketNotEnoughSpace) {
reason = AsyncMqttClientDisconnectReason::ESP8266_NOT_ENOUGH_SPACE;
} else if (_tlsBadFingerprint) {
reason = AsyncMqttClientDisconnectReason::TLS_BAD_FINGERPRINT;
} else {
reason = AsyncMqttClientDisconnectReason::TCP_DISCONNECTED;
}
for (auto callback : _onDisconnectUserCallbacks) callback(reason);
}
_clear();
}
void AsyncMqttClient::_onError(AsyncClient* client, int8_t error) {
(void)client;
(void)error;
// _onDisconnect called anyway
}
void AsyncMqttClient::_onTimeout(AsyncClient* client, uint32_t time) {
(void)client;
(void)time;
// disconnection will be handled by ping/pong management
}
void AsyncMqttClient::_onAck(AsyncClient* client, size_t len, uint32_t time) {
(void)client;
(void)len;
(void)time;
}
void AsyncMqttClient::_onData(AsyncClient* client, char* data, size_t len) {
(void)client;
size_t currentBytePosition = 0;
char currentByte;
do {
switch (_parsingInformation.bufferState) {
case AsyncMqttClientInternals::BufferState::NONE:
currentByte = data[currentBytePosition++];
_parsingInformation.packetType = currentByte >> 4;
_parsingInformation.packetFlags = (currentByte << 4) >> 4;
_parsingInformation.bufferState = AsyncMqttClientInternals::BufferState::REMAINING_LENGTH;
_lastServerActivity = millis();
switch (_parsingInformation.packetType) {
case AsyncMqttClientInternals::PacketType.CONNACK:
_currentParsedPacket = new AsyncMqttClientInternals::ConnAckPacket(&_parsingInformation, std::bind(&AsyncMqttClient::_onConnAck, this, std::placeholders::_1, std::placeholders::_2));
break;
case AsyncMqttClientInternals::PacketType.PINGRESP:
_currentParsedPacket = new AsyncMqttClientInternals::PingRespPacket(&_parsingInformation, std::bind(&AsyncMqttClient::_onPingResp, this));
break;
case AsyncMqttClientInternals::PacketType.SUBACK:
_currentParsedPacket = new AsyncMqttClientInternals::SubAckPacket(&_parsingInformation, std::bind(&AsyncMqttClient::_onSubAck, this, std::placeholders::_1, std::placeholders::_2));
break;
case AsyncMqttClientInternals::PacketType.UNSUBACK:
_currentParsedPacket = new AsyncMqttClientInternals::UnsubAckPacket(&_parsingInformation, std::bind(&AsyncMqttClient::_onUnsubAck, this, std::placeholders::_1));
break;
case AsyncMqttClientInternals::PacketType.PUBLISH:
_currentParsedPacket = new AsyncMqttClientInternals::PublishPacket(&_parsingInformation, std::bind(&AsyncMqttClient::_onMessage, this, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3, std::placeholders::_4, std::placeholders::_5, std::placeholders::_6, std::placeholders::_7, std::placeholders::_8, std::placeholders::_9), std::bind(&AsyncMqttClient::_onPublish, this, std::placeholders::_1, std::placeholders::_2));
break;
case AsyncMqttClientInternals::PacketType.PUBREL:
_currentParsedPacket = new AsyncMqttClientInternals::PubRelPacket(&_parsingInformation, std::bind(&AsyncMqttClient::_onPubRel, this, std::placeholders::_1));
break;
case AsyncMqttClientInternals::PacketType.PUBACK:
_currentParsedPacket = new AsyncMqttClientInternals::PubAckPacket(&_parsingInformation, std::bind(&AsyncMqttClient::_onPubAck, this, std::placeholders::_1));
break;
case AsyncMqttClientInternals::PacketType.PUBREC:
_currentParsedPacket = new AsyncMqttClientInternals::PubRecPacket(&_parsingInformation, std::bind(&AsyncMqttClient::_onPubRec, this, std::placeholders::_1));
break;
case AsyncMqttClientInternals::PacketType.PUBCOMP:
_currentParsedPacket = new AsyncMqttClientInternals::PubCompPacket(&_parsingInformation, std::bind(&AsyncMqttClient::_onPubComp, this, std::placeholders::_1));
break;
default:
break;
}
break;
case AsyncMqttClientInternals::BufferState::REMAINING_LENGTH:
currentByte = data[currentBytePosition++];
_remainingLengthBuffer[_remainingLengthBufferPosition++] = currentByte;
if (currentByte >> 7 == 0) {
_parsingInformation.remainingLength = AsyncMqttClientInternals::Helpers::decodeRemainingLength(_remainingLengthBuffer);
_remainingLengthBufferPosition = 0;
if (_parsingInformation.remainingLength > 0) {
_parsingInformation.bufferState = AsyncMqttClientInternals::BufferState::VARIABLE_HEADER;
} else {
// PINGRESP is a special case where it has no variable header, so the packet ends right here
_parsingInformation.bufferState = AsyncMqttClientInternals::BufferState::NONE;
_onPingResp();
}
}
break;
case AsyncMqttClientInternals::BufferState::VARIABLE_HEADER:
_currentParsedPacket->parseVariableHeader(data, len, &currentBytePosition);
break;
case AsyncMqttClientInternals::BufferState::PAYLOAD:
_currentParsedPacket->parsePayload(data, len, &currentBytePosition);
break;
default:
currentBytePosition = len;
}
} while (currentBytePosition != len);
}
void AsyncMqttClient::_onPoll(AsyncClient* client) {
if (!_connected) return;
// if there is too much time the client has sent a ping request without a response, disconnect client to avoid half open connections
if (_lastPingRequestTime != 0 && (millis() - _lastPingRequestTime) >= (_keepAlive * 1000 * 2)) {
disconnect();
return;
// send ping to ensure the server will receive at least one message inside keepalive window
} else if (_lastPingRequestTime == 0 && (millis() - _lastClientActivity) >= (_keepAlive * 1000 * 0.7)) {
_sendPing();
// send ping to verify if the server is still there (ensure this is not a half connection)
} else if (_connected && _lastPingRequestTime == 0 && (millis() - _lastServerActivity) >= (_keepAlive * 1000 * 0.7)) {
_sendPing();
}
// handle to send ack packets
_sendAcks();
// handle disconnect
if (_disconnectFlagged) {
_sendDisconnect();
}
}
/* MQTT */
void AsyncMqttClient::_onPingResp() {
_freeCurrentParsedPacket();
_lastPingRequestTime = 0;
}
void AsyncMqttClient::_onConnAck(bool sessionPresent, uint8_t connectReturnCode) {
(void)sessionPresent;
_freeCurrentParsedPacket();
if (connectReturnCode == 0) {
_connected = true;
for (auto callback : _onConnectUserCallbacks) callback(sessionPresent);
} else {
for (auto callback : _onDisconnectUserCallbacks) callback(static_cast<AsyncMqttClientDisconnectReason>(connectReturnCode));
_disconnectFlagged = true;
}
}
void AsyncMqttClient::_onSubAck(uint16_t packetId, char status) {
_freeCurrentParsedPacket();
for (auto callback : _onSubscribeUserCallbacks) callback(packetId, status);
}
void AsyncMqttClient::_onUnsubAck(uint16_t packetId) {
_freeCurrentParsedPacket();
for (auto callback : _onUnsubscribeUserCallbacks) callback(packetId);
}
void AsyncMqttClient::_onMessage(char* topic, char* payload, uint8_t qos, bool dup, bool retain, size_t len, size_t index, size_t total, uint16_t packetId) {
bool notifyPublish = true;
if (qos == 2) {
for (AsyncMqttClientInternals::PendingPubRel pendingPubRel : _pendingPubRels) {
if (pendingPubRel.packetId == packetId) {
notifyPublish = false;
break;
}
}
}
if (notifyPublish) {
AsyncMqttClientMessageProperties properties;
properties.qos = qos;
properties.dup = dup;
properties.retain = retain;
for (auto callback : _onMessageUserCallbacks) callback(topic, payload, properties, len, index, total);
}
}
void AsyncMqttClient::_onPublish(uint16_t packetId, uint8_t qos) {
AsyncMqttClientInternals::PendingAck pendingAck;
if (qos == 1) {
pendingAck.packetType = AsyncMqttClientInternals::PacketType.PUBACK;
pendingAck.headerFlag = AsyncMqttClientInternals::HeaderFlag.PUBACK_RESERVED;
pendingAck.packetId = packetId;
_toSendAcks.push_back(pendingAck);
} else if (qos == 2) {
pendingAck.packetType = AsyncMqttClientInternals::PacketType.PUBREC;
pendingAck.headerFlag = AsyncMqttClientInternals::HeaderFlag.PUBREC_RESERVED;
pendingAck.packetId = packetId;
_toSendAcks.push_back(pendingAck);
bool pubRelAwaiting = false;
for (AsyncMqttClientInternals::PendingPubRel pendingPubRel : _pendingPubRels) {
if (pendingPubRel.packetId == packetId) {
pubRelAwaiting = true;
break;
}
}
if (!pubRelAwaiting) {
AsyncMqttClientInternals::PendingPubRel pendingPubRel;
pendingPubRel.packetId = packetId;
_pendingPubRels.push_back(pendingPubRel);
}
_sendAcks();
}
_freeCurrentParsedPacket();
}
void AsyncMqttClient::_onPubRel(uint16_t packetId) {
_freeCurrentParsedPacket();
AsyncMqttClientInternals::PendingAck pendingAck;
pendingAck.packetType = AsyncMqttClientInternals::PacketType.PUBCOMP;
pendingAck.headerFlag = AsyncMqttClientInternals::HeaderFlag.PUBCOMP_RESERVED;
pendingAck.packetId = packetId;
_toSendAcks.push_back(pendingAck);
for (size_t i = 0; i < _pendingPubRels.size(); i++) {
if (_pendingPubRels[i].packetId == packetId) {
_pendingPubRels.erase(_pendingPubRels.begin() + i);
_pendingPubRels.shrink_to_fit();
}
}
_sendAcks();
}
void AsyncMqttClient::_onPubAck(uint16_t packetId) {
_freeCurrentParsedPacket();
for (auto callback : _onPublishUserCallbacks) callback(packetId);
}
void AsyncMqttClient::_onPubRec(uint16_t packetId) {
_freeCurrentParsedPacket();
AsyncMqttClientInternals::PendingAck pendingAck;
pendingAck.packetType = AsyncMqttClientInternals::PacketType.PUBREL;
pendingAck.headerFlag = AsyncMqttClientInternals::HeaderFlag.PUBREL_RESERVED;
pendingAck.packetId = packetId;
_toSendAcks.push_back(pendingAck);
_sendAcks();
}
void AsyncMqttClient::_onPubComp(uint16_t packetId) {
_freeCurrentParsedPacket();
for (auto callback : _onPublishUserCallbacks) callback(packetId);
}
bool AsyncMqttClient::_sendPing() {
char fixedHeader[2];
fixedHeader[0] = AsyncMqttClientInternals::PacketType.PINGREQ;
fixedHeader[0] = fixedHeader[0] << 4;
fixedHeader[0] = fixedHeader[0] | AsyncMqttClientInternals::HeaderFlag.PINGREQ_RESERVED;
fixedHeader[1] = 0;
size_t neededSpace = 2;
SEMAPHORE_TAKE(false);
if (_client.space() < neededSpace) { SEMAPHORE_GIVE(); return false; }
_client.add(fixedHeader, 2);
_client.send();
_lastClientActivity = millis();
_lastPingRequestTime = millis();
SEMAPHORE_GIVE();
return true;
}
void AsyncMqttClient::_sendAcks() {
uint8_t neededAckSpace = 2 + 2;
SEMAPHORE_TAKE();
for (size_t i = 0; i < _toSendAcks.size(); i++) {
if (_client.space() < neededAckSpace) break;
AsyncMqttClientInternals::PendingAck pendingAck = _toSendAcks[i];
char fixedHeader[2];
fixedHeader[0] = pendingAck.packetType;
fixedHeader[0] = fixedHeader[0] << 4;
fixedHeader[0] = fixedHeader[0] | pendingAck.headerFlag;
fixedHeader[1] = 2;
char packetIdBytes[2];
packetIdBytes[0] = pendingAck.packetId >> 8;
packetIdBytes[1] = pendingAck.packetId & 0xFF;
_client.add(fixedHeader, 2);
_client.add(packetIdBytes, 2);
_client.send();
_toSendAcks.erase(_toSendAcks.begin() + i);
_toSendAcks.shrink_to_fit();
_lastClientActivity = millis();
}
SEMAPHORE_GIVE();
}
bool AsyncMqttClient::_sendDisconnect() {
if (!_connected) return true;
const uint8_t neededSpace = 2;
SEMAPHORE_TAKE(false);
if (_client.space() < neededSpace) { SEMAPHORE_GIVE(); return false; }
char fixedHeader[2];
fixedHeader[0] = AsyncMqttClientInternals::PacketType.DISCONNECT;
fixedHeader[0] = fixedHeader[0] << 4;
fixedHeader[0] = fixedHeader[0] | AsyncMqttClientInternals::HeaderFlag.DISCONNECT_RESERVED;
fixedHeader[1] = 0;
_client.add(fixedHeader, 2);
_client.send();
_client.close(true);
_disconnectFlagged = false;
SEMAPHORE_GIVE();
return true;
}
uint16_t AsyncMqttClient::_getNextPacketId() {
uint16_t nextPacketId = _nextPacketId;
if (_nextPacketId == 65535) _nextPacketId = 0; // 0 is forbidden
_nextPacketId++;
return nextPacketId;
}
bool AsyncMqttClient::connected() const {
return _connected;
}
void AsyncMqttClient::connect() {
if (_connected) return;
#if ASYNC_TCP_SSL_ENABLED
if (_useIp) {
_client.connect(_ip, _port, _secure);
} else {
_client.connect(_host, _port, _secure);
}
#else
if (_useIp) {
_client.connect(_ip, _port);
} else {
_client.connect(_host, _port);
}
#endif
}
void AsyncMqttClient::disconnect(bool force) {
if (!_connected) return;
if (force) {
_client.close(true);
} else {
_disconnectFlagged = true;
_sendDisconnect();
}
}
uint16_t AsyncMqttClient::subscribe(const char* topic, uint8_t qos) {
if (!_connected) return 0;
char fixedHeader[5];
fixedHeader[0] = AsyncMqttClientInternals::PacketType.SUBSCRIBE;
fixedHeader[0] = fixedHeader[0] << 4;
fixedHeader[0] = fixedHeader[0] | AsyncMqttClientInternals::HeaderFlag.SUBSCRIBE_RESERVED;
uint16_t topicLength = strlen(topic);
char topicLengthBytes[2];
topicLengthBytes[0] = topicLength >> 8;
topicLengthBytes[1] = topicLength & 0xFF;
char qosByte[1];
qosByte[0] = qos;
uint8_t remainingLengthLength = AsyncMqttClientInternals::Helpers::encodeRemainingLength(2 + 2 + topicLength + 1, fixedHeader + 1);
size_t neededSpace = 0;
neededSpace += 1 + remainingLengthLength;
neededSpace += 2;
neededSpace += 2;
neededSpace += topicLength;
neededSpace += 1;
SEMAPHORE_TAKE(0);
if (_client.space() < neededSpace) { SEMAPHORE_GIVE(); return 0; }
uint16_t packetId = _getNextPacketId();
char packetIdBytes[2];
packetIdBytes[0] = packetId >> 8;
packetIdBytes[1] = packetId & 0xFF;
_client.add(fixedHeader, 1 + remainingLengthLength);
_client.add(packetIdBytes, 2);
_client.add(topicLengthBytes, 2);
_client.add(topic, topicLength);
_client.add(qosByte, 1);
_client.send();
_lastClientActivity = millis();
SEMAPHORE_GIVE();
return packetId;
}
uint16_t AsyncMqttClient::unsubscribe(const char* topic) {
if (!_connected) return 0;
char fixedHeader[5];
fixedHeader[0] = AsyncMqttClientInternals::PacketType.UNSUBSCRIBE;
fixedHeader[0] = fixedHeader[0] << 4;
fixedHeader[0] = fixedHeader[0] | AsyncMqttClientInternals::HeaderFlag.UNSUBSCRIBE_RESERVED;
uint16_t topicLength = strlen(topic);
char topicLengthBytes[2];
topicLengthBytes[0] = topicLength >> 8;
topicLengthBytes[1] = topicLength & 0xFF;
uint8_t remainingLengthLength = AsyncMqttClientInternals::Helpers::encodeRemainingLength(2 + 2 + topicLength, fixedHeader + 1);
size_t neededSpace = 0;
neededSpace += 1 + remainingLengthLength;
neededSpace += 2;
neededSpace += 2;
neededSpace += topicLength;
SEMAPHORE_TAKE(0);
if (_client.space() < neededSpace) { SEMAPHORE_GIVE(); return 0; }
uint16_t packetId = _getNextPacketId();
char packetIdBytes[2];
packetIdBytes[0] = packetId >> 8;
packetIdBytes[1] = packetId & 0xFF;
_client.add(fixedHeader, 1 + remainingLengthLength);
_client.add(packetIdBytes, 2);
_client.add(topicLengthBytes, 2);
_client.add(topic, topicLength);
_client.send();
_lastClientActivity = millis();
SEMAPHORE_GIVE();
return packetId;
}
uint16_t AsyncMqttClient::publish(const char* topic, uint8_t qos, bool retain, const char* payload, size_t length, bool dup, uint16_t message_id) {
if (!_connected) return 0;
char fixedHeader[5];
fixedHeader[0] = AsyncMqttClientInternals::PacketType.PUBLISH;
fixedHeader[0] = fixedHeader[0] << 4;
if (dup) fixedHeader[0] |= AsyncMqttClientInternals::HeaderFlag.PUBLISH_DUP;
if (retain) fixedHeader[0] |= AsyncMqttClientInternals::HeaderFlag.PUBLISH_RETAIN;
switch (qos) {
case 0:
fixedHeader[0] |= AsyncMqttClientInternals::HeaderFlag.PUBLISH_QOS0;
break;
case 1:
fixedHeader[0] |= AsyncMqttClientInternals::HeaderFlag.PUBLISH_QOS1;
break;
case 2:
fixedHeader[0] |= AsyncMqttClientInternals::HeaderFlag.PUBLISH_QOS2;
break;
}
uint16_t topicLength = strlen(topic);
char topicLengthBytes[2];
topicLengthBytes[0] = topicLength >> 8;
topicLengthBytes[1] = topicLength & 0xFF;
uint32_t payloadLength = length;
if (payload != nullptr && payloadLength == 0) payloadLength = strlen(payload);
uint32_t remainingLength = 2 + topicLength + payloadLength;
if (qos != 0) remainingLength += 2;
uint8_t remainingLengthLength = AsyncMqttClientInternals::Helpers::encodeRemainingLength(remainingLength, fixedHeader + 1);
size_t neededSpace = 0;
neededSpace += 1 + remainingLengthLength;
neededSpace += 2;
neededSpace += topicLength;
if (qos != 0) neededSpace += 2;
if (payload != nullptr) neededSpace += payloadLength;
SEMAPHORE_TAKE(0);
if (_client.space() < neededSpace) { SEMAPHORE_GIVE(); return 0; }
uint16_t packetId = 0;
char packetIdBytes[2];
if (qos != 0) {
if (dup && message_id > 0) {
packetId = message_id;
} else {
packetId = _getNextPacketId();
}
packetIdBytes[0] = packetId >> 8;
packetIdBytes[1] = packetId & 0xFF;
}
_client.add(fixedHeader, 1 + remainingLengthLength);
_client.add(topicLengthBytes, 2);
_client.add(topic, topicLength);
if (qos != 0) _client.add(packetIdBytes, 2);
if (payload != nullptr) _client.add(payload, payloadLength);
_client.send();
_lastClientActivity = millis();
SEMAPHORE_GIVE();
if (qos != 0) {
return packetId;
} else {
return 1;
}
}

View File

@@ -1,6 +0,0 @@
#ifndef SRC_ASYNCMQTTCLIENT_H_
#define SRC_ASYNCMQTTCLIENT_H_
#include "AsyncMqttClient.hpp"
#endif // SRC_ASYNCMQTTCLIENT_H_

View File

@@ -1,166 +0,0 @@
#pragma once
#include <functional>
#include <vector>
#include "Arduino.h"
#ifdef ESP32
#include <AsyncTCP.h>
#include <freertos/semphr.h>
#elif defined(ESP8266)
#include <ESPAsyncTCP.h>
#else
#error Platform not supported
#endif
#if ASYNC_TCP_SSL_ENABLED
#include <tcp_axtls.h>
#define SHA1_SIZE 20
#endif
#include "AsyncMqttClient/Flags.hpp"
#include "AsyncMqttClient/ParsingInformation.hpp"
#include "AsyncMqttClient/MessageProperties.hpp"
#include "AsyncMqttClient/Helpers.hpp"
#include "AsyncMqttClient/Callbacks.hpp"
#include "AsyncMqttClient/DisconnectReasons.hpp"
#include "AsyncMqttClient/Storage.hpp"
#include "AsyncMqttClient/Packets/Packet.hpp"
#include "AsyncMqttClient/Packets/ConnAckPacket.hpp"
#include "AsyncMqttClient/Packets/PingRespPacket.hpp"
#include "AsyncMqttClient/Packets/SubAckPacket.hpp"
#include "AsyncMqttClient/Packets/UnsubAckPacket.hpp"
#include "AsyncMqttClient/Packets/PublishPacket.hpp"
#include "AsyncMqttClient/Packets/PubRelPacket.hpp"
#include "AsyncMqttClient/Packets/PubAckPacket.hpp"
#include "AsyncMqttClient/Packets/PubRecPacket.hpp"
#include "AsyncMqttClient/Packets/PubCompPacket.hpp"
#if ESP32
#define SEMAPHORE_TAKE(X) if (xSemaphoreTake(_xSemaphore, 1000 / portTICK_PERIOD_MS) != pdTRUE) { return X; } // Waits max 1000ms
#define SEMAPHORE_GIVE() xSemaphoreGive(_xSemaphore);
#elif defined(ESP8266)
#define SEMAPHORE_TAKE(X) void()
#define SEMAPHORE_GIVE() void()
#endif
class AsyncMqttClient {
public:
AsyncMqttClient();
~AsyncMqttClient();
AsyncMqttClient& setKeepAlive(uint16_t keepAlive);
AsyncMqttClient& setClientId(const char* clientId);
AsyncMqttClient& setCleanSession(bool cleanSession);
AsyncMqttClient& setMaxTopicLength(uint16_t maxTopicLength);
AsyncMqttClient& setCredentials(const char* username, const char* password = nullptr);
AsyncMqttClient& setWill(const char* topic, uint8_t qos, bool retain, const char* payload = nullptr, size_t length = 0);
AsyncMqttClient& setServer(IPAddress ip, uint16_t port);
AsyncMqttClient& setServer(const char* host, uint16_t port);
#if ASYNC_TCP_SSL_ENABLED
AsyncMqttClient& setSecure(bool secure);
AsyncMqttClient& addServerFingerprint(const uint8_t* fingerprint);
#endif
AsyncMqttClient& onConnect(AsyncMqttClientInternals::OnConnectUserCallback callback);
AsyncMqttClient& onDisconnect(AsyncMqttClientInternals::OnDisconnectUserCallback callback);
AsyncMqttClient& onSubscribe(AsyncMqttClientInternals::OnSubscribeUserCallback callback);
AsyncMqttClient& onUnsubscribe(AsyncMqttClientInternals::OnUnsubscribeUserCallback callback);
AsyncMqttClient& onMessage(AsyncMqttClientInternals::OnMessageUserCallback callback);
AsyncMqttClient& onPublish(AsyncMqttClientInternals::OnPublishUserCallback callback);
bool connected() const;
void connect();
void disconnect(bool force = false);
uint16_t subscribe(const char* topic, uint8_t qos);
uint16_t unsubscribe(const char* topic);
uint16_t publish(const char* topic, uint8_t qos, bool retain, const char* payload = nullptr, size_t length = 0, bool dup = false, uint16_t message_id = 0);
private:
AsyncClient _client;
bool _connected;
bool _connectPacketNotEnoughSpace;
bool _disconnectFlagged;
bool _tlsBadFingerprint;
uint32_t _lastClientActivity;
uint32_t _lastServerActivity;
uint32_t _lastPingRequestTime;
char _generatedClientId[13 + 1]; // esp8266abc123
IPAddress _ip;
const char* _host;
bool _useIp;
#if ASYNC_TCP_SSL_ENABLED
bool _secure;
#endif
uint16_t _port;
uint16_t _keepAlive;
bool _cleanSession;
const char* _clientId;
const char* _username;
const char* _password;
const char* _willTopic;
const char* _willPayload;
uint16_t _willPayloadLength;
uint8_t _willQos;
bool _willRetain;
#if ASYNC_TCP_SSL_ENABLED
std::vector<std::array<uint8_t, SHA1_SIZE>> _secureServerFingerprints;
#endif
std::vector<AsyncMqttClientInternals::OnConnectUserCallback> _onConnectUserCallbacks;
std::vector<AsyncMqttClientInternals::OnDisconnectUserCallback> _onDisconnectUserCallbacks;
std::vector<AsyncMqttClientInternals::OnSubscribeUserCallback> _onSubscribeUserCallbacks;
std::vector<AsyncMqttClientInternals::OnUnsubscribeUserCallback> _onUnsubscribeUserCallbacks;
std::vector<AsyncMqttClientInternals::OnMessageUserCallback> _onMessageUserCallbacks;
std::vector<AsyncMqttClientInternals::OnPublishUserCallback> _onPublishUserCallbacks;
AsyncMqttClientInternals::ParsingInformation _parsingInformation;
AsyncMqttClientInternals::Packet* _currentParsedPacket;
uint8_t _remainingLengthBufferPosition;
char _remainingLengthBuffer[4];
uint16_t _nextPacketId;
std::vector<AsyncMqttClientInternals::PendingPubRel> _pendingPubRels;
std::vector<AsyncMqttClientInternals::PendingAck> _toSendAcks;
#ifdef ESP32
SemaphoreHandle_t _xSemaphore = nullptr;
#endif
void _clear();
void _freeCurrentParsedPacket();
// TCP
void _onConnect(AsyncClient* client);
void _onDisconnect(AsyncClient* client);
static void _onError(AsyncClient* client, int8_t error);
void _onTimeout(AsyncClient* client, uint32_t time);
static void _onAck(AsyncClient* client, size_t len, uint32_t time);
void _onData(AsyncClient* client, char* data, size_t len);
void _onPoll(AsyncClient* client);
// MQTT
void _onPingResp();
void _onConnAck(bool sessionPresent, uint8_t connectReturnCode);
void _onSubAck(uint16_t packetId, char status);
void _onUnsubAck(uint16_t packetId);
void _onMessage(char* topic, char* payload, uint8_t qos, bool dup, bool retain, size_t len, size_t index, size_t total, uint16_t packetId);
void _onPublish(uint16_t packetId, uint8_t qos);
void _onPubRel(uint16_t packetId);
void _onPubAck(uint16_t packetId);
void _onPubRec(uint16_t packetId);
void _onPubComp(uint16_t packetId);
bool _sendPing();
void _sendAcks();
bool _sendDisconnect();
uint16_t _getNextPacketId();
};

View File

@@ -1,28 +0,0 @@
#pragma once
#include <functional>
#include "DisconnectReasons.hpp"
#include "MessageProperties.hpp"
namespace AsyncMqttClientInternals {
// user callbacks
typedef std::function<void(bool sessionPresent)> OnConnectUserCallback;
typedef std::function<void(AsyncMqttClientDisconnectReason reason)> OnDisconnectUserCallback;
typedef std::function<void(uint16_t packetId, uint8_t qos)> OnSubscribeUserCallback;
typedef std::function<void(uint16_t packetId)> OnUnsubscribeUserCallback;
typedef std::function<void(char* topic, char* payload, AsyncMqttClientMessageProperties properties, size_t len, size_t index, size_t total)> OnMessageUserCallback;
typedef std::function<void(uint16_t packetId)> OnPublishUserCallback;
// internal callbacks
typedef std::function<void(bool sessionPresent, uint8_t connectReturnCode)> OnConnAckInternalCallback;
typedef std::function<void()> OnPingRespInternalCallback;
typedef std::function<void(uint16_t packetId, char status)> OnSubAckInternalCallback;
typedef std::function<void(uint16_t packetId)> OnUnsubAckInternalCallback;
typedef std::function<void(char* topic, char* payload, uint8_t qos, bool dup, bool retain, size_t len, size_t index, size_t total, uint16_t packetId)> OnMessageInternalCallback;
typedef std::function<void(uint16_t packetId, uint8_t qos)> OnPublishInternalCallback;
typedef std::function<void(uint16_t packetId)> OnPubRelInternalCallback;
typedef std::function<void(uint16_t packetId)> OnPubAckInternalCallback;
typedef std::function<void(uint16_t packetId)> OnPubRecInternalCallback;
typedef std::function<void(uint16_t packetId)> OnPubCompInternalCallback;
} // namespace AsyncMqttClientInternals

View File

@@ -1,15 +0,0 @@
#pragma once
enum class AsyncMqttClientDisconnectReason : int8_t {
TCP_DISCONNECTED = 0,
MQTT_UNACCEPTABLE_PROTOCOL_VERSION = 1,
MQTT_IDENTIFIER_REJECTED = 2,
MQTT_SERVER_UNAVAILABLE = 3,
MQTT_MALFORMED_CREDENTIALS = 4,
MQTT_NOT_AUTHORIZED = 5,
ESP8266_NOT_ENOUGH_SPACE = 6,
TLS_BAD_FINGERPRINT = 7
};

View File

@@ -1,57 +0,0 @@
#pragma once
namespace AsyncMqttClientInternals {
constexpr struct {
const uint8_t RESERVED = 0;
const uint8_t CONNECT = 1;
const uint8_t CONNACK = 2;
const uint8_t PUBLISH = 3;
const uint8_t PUBACK = 4;
const uint8_t PUBREC = 5;
const uint8_t PUBREL = 6;
const uint8_t PUBCOMP = 7;
const uint8_t SUBSCRIBE = 8;
const uint8_t SUBACK = 9;
const uint8_t UNSUBSCRIBE = 10;
const uint8_t UNSUBACK = 11;
const uint8_t PINGREQ = 12;
const uint8_t PINGRESP = 13;
const uint8_t DISCONNECT = 14;
const uint8_t RESERVED2 = 1;
} PacketType;
constexpr struct {
const uint8_t CONNECT_RESERVED = 0x00;
const uint8_t CONNACK_RESERVED = 0x00;
const uint8_t PUBLISH_DUP = 0x08;
const uint8_t PUBLISH_QOS0 = 0x00;
const uint8_t PUBLISH_QOS1 = 0x02;
const uint8_t PUBLISH_QOS2 = 0x04;
const uint8_t PUBLISH_QOSRESERVED = 0x06;
const uint8_t PUBLISH_RETAIN = 0x01;
const uint8_t PUBACK_RESERVED = 0x00;
const uint8_t PUBREC_RESERVED = 0x00;
const uint8_t PUBREL_RESERVED = 0x02;
const uint8_t PUBCOMP_RESERVED = 0x00;
const uint8_t SUBSCRIBE_RESERVED = 0x02;
const uint8_t SUBACK_RESERVED = 0x00;
const uint8_t UNSUBSCRIBE_RESERVED = 0x02;
const uint8_t UNSUBACK_RESERVED = 0x00;
const uint8_t PINGREQ_RESERVED = 0x00;
const uint8_t PINGRESP_RESERVED = 0x00;
const uint8_t DISCONNECT_RESERVED = 0x00;
const uint8_t RESERVED2_RESERVED = 0x00;
} HeaderFlag;
constexpr struct {
const uint8_t USERNAME = 0x80;
const uint8_t PASSWORD = 0x40;
const uint8_t WILL_RETAIN = 0x20;
const uint8_t WILL_QOS0 = 0x00;
const uint8_t WILL_QOS1 = 0x08;
const uint8_t WILL_QOS2 = 0x10;
const uint8_t WILL = 0x04;
const uint8_t CLEAN_SESSION = 0x02;
const uint8_t RESERVED = 0x00;
} ConnectFlag;
} // namespace AsyncMqttClientInternals

View File

@@ -1,38 +0,0 @@
#pragma once
namespace AsyncMqttClientInternals {
class Helpers {
public:
static uint32_t decodeRemainingLength(char* bytes) {
uint32_t multiplier = 1;
uint32_t value = 0;
uint8_t currentByte = 0;
uint8_t encodedByte;
do {
encodedByte = bytes[currentByte++];
value += (encodedByte & 127) * multiplier;
multiplier *= 128;
} while ((encodedByte & 128) != 0);
return value;
}
static uint8_t encodeRemainingLength(uint32_t remainingLength, char* destination) {
uint8_t currentByte = 0;
uint8_t bytesNeeded = 0;
do {
uint8_t encodedByte = remainingLength % 128;
remainingLength /= 128;
if (remainingLength > 0) {
encodedByte = encodedByte | 128;
}
destination[currentByte++] = encodedByte;
bytesNeeded++;
} while (remainingLength > 0);
return bytesNeeded;
}
};
} // namespace AsyncMqttClientInternals

View File

@@ -1,7 +0,0 @@
#pragma once
struct AsyncMqttClientMessageProperties {
uint8_t qos;
bool dup;
bool retain;
};

View File

@@ -1,30 +0,0 @@
#include "ConnAckPacket.hpp"
using AsyncMqttClientInternals::ConnAckPacket;
ConnAckPacket::ConnAckPacket(ParsingInformation* parsingInformation, OnConnAckInternalCallback callback)
: _parsingInformation(parsingInformation)
, _callback(callback)
, _bytePosition(0)
, _sessionPresent(false)
, _connectReturnCode(0) {
}
ConnAckPacket::~ConnAckPacket() {
}
void ConnAckPacket::parseVariableHeader(char* data, size_t len, size_t* currentBytePosition) {
char currentByte = data[(*currentBytePosition)++];
if (_bytePosition++ == 0) {
_sessionPresent = (currentByte << 7) >> 7;
} else {
_connectReturnCode = currentByte;
_parsingInformation->bufferState = BufferState::NONE;
_callback(_sessionPresent, _connectReturnCode);
}
}
void ConnAckPacket::parsePayload(char* data, size_t len, size_t* currentBytePosition) {
(void)data;
(void)currentBytePosition;
}

View File

@@ -1,25 +0,0 @@
#pragma once
#include "Arduino.h"
#include "Packet.hpp"
#include "../ParsingInformation.hpp"
#include "../Callbacks.hpp"
namespace AsyncMqttClientInternals {
class ConnAckPacket : public Packet {
public:
explicit ConnAckPacket(ParsingInformation* parsingInformation, OnConnAckInternalCallback callback);
~ConnAckPacket();
void parseVariableHeader(char* data, size_t len, size_t* currentBytePosition);
void parsePayload(char* data, size_t len, size_t* currentBytePosition);
private:
ParsingInformation* _parsingInformation;
OnConnAckInternalCallback _callback;
uint8_t _bytePosition;
bool _sessionPresent;
uint8_t _connectReturnCode;
};
} // namespace AsyncMqttClientInternals

View File

@@ -1,11 +0,0 @@
#pragma once
namespace AsyncMqttClientInternals {
class Packet {
public:
virtual ~Packet() {}
virtual void parseVariableHeader(char* data, size_t len, size_t* currentBytePosition) = 0;
virtual void parsePayload(char* data, size_t len, size_t* currentBytePosition) = 0;
};
} // namespace AsyncMqttClientInternals

View File

@@ -1,21 +0,0 @@
#include "PingRespPacket.hpp"
using AsyncMqttClientInternals::PingRespPacket;
PingRespPacket::PingRespPacket(ParsingInformation* parsingInformation, OnPingRespInternalCallback callback)
: _parsingInformation(parsingInformation)
, _callback(callback) {
}
PingRespPacket::~PingRespPacket() {
}
void PingRespPacket::parseVariableHeader(char* data, size_t len, size_t* currentBytePosition) {
(void)data;
(void)currentBytePosition;
}
void PingRespPacket::parsePayload(char* data, size_t len, size_t* currentBytePosition) {
(void)data;
(void)currentBytePosition;
}

View File

@@ -1,21 +0,0 @@
#pragma once
#include "Arduino.h"
#include "Packet.hpp"
#include "../ParsingInformation.hpp"
#include "../Callbacks.hpp"
namespace AsyncMqttClientInternals {
class PingRespPacket : public Packet {
public:
explicit PingRespPacket(ParsingInformation* parsingInformation, OnPingRespInternalCallback callback);
~PingRespPacket();
void parseVariableHeader(char* data, size_t len, size_t* currentBytePosition);
void parsePayload(char* data, size_t len, size_t* currentBytePosition);
private:
ParsingInformation* _parsingInformation;
OnPingRespInternalCallback _callback;
};
} // namespace AsyncMqttClientInternals

View File

@@ -1,30 +0,0 @@
#include "PubAckPacket.hpp"
using AsyncMqttClientInternals::PubAckPacket;
PubAckPacket::PubAckPacket(ParsingInformation* parsingInformation, OnPubAckInternalCallback callback)
: _parsingInformation(parsingInformation)
, _callback(callback)
, _bytePosition(0)
, _packetIdMsb(0)
, _packetId(0) {
}
PubAckPacket::~PubAckPacket() {
}
void PubAckPacket::parseVariableHeader(char* data, size_t len, size_t* currentBytePosition) {
char currentByte = data[(*currentBytePosition)++];
if (_bytePosition++ == 0) {
_packetIdMsb = currentByte;
} else {
_packetId = currentByte | _packetIdMsb << 8;
_parsingInformation->bufferState = BufferState::NONE;
_callback(_packetId);
}
}
void PubAckPacket::parsePayload(char* data, size_t len, size_t* currentBytePosition) {
(void)data;
(void)currentBytePosition;
}

View File

@@ -1,25 +0,0 @@
#pragma once
#include "Arduino.h"
#include "Packet.hpp"
#include "../ParsingInformation.hpp"
#include "../Callbacks.hpp"
namespace AsyncMqttClientInternals {
class PubAckPacket : public Packet {
public:
explicit PubAckPacket(ParsingInformation* parsingInformation, OnPubAckInternalCallback callback);
~PubAckPacket();
void parseVariableHeader(char* data, size_t len, size_t* currentBytePosition);
void parsePayload(char* data, size_t len, size_t* currentBytePosition);
private:
ParsingInformation* _parsingInformation;
OnPubAckInternalCallback _callback;
uint8_t _bytePosition;
char _packetIdMsb;
uint16_t _packetId;
};
} // namespace AsyncMqttClientInternals

View File

@@ -1,30 +0,0 @@
#include "PubCompPacket.hpp"
using AsyncMqttClientInternals::PubCompPacket;
PubCompPacket::PubCompPacket(ParsingInformation* parsingInformation, OnPubCompInternalCallback callback)
: _parsingInformation(parsingInformation)
, _callback(callback)
, _bytePosition(0)
, _packetIdMsb(0)
, _packetId(0) {
}
PubCompPacket::~PubCompPacket() {
}
void PubCompPacket::parseVariableHeader(char* data, size_t len, size_t* currentBytePosition) {
char currentByte = data[(*currentBytePosition)++];
if (_bytePosition++ == 0) {
_packetIdMsb = currentByte;
} else {
_packetId = currentByte | _packetIdMsb << 8;
_parsingInformation->bufferState = BufferState::NONE;
_callback(_packetId);
}
}
void PubCompPacket::parsePayload(char* data, size_t len, size_t* currentBytePosition) {
(void)data;
(void)currentBytePosition;
}

View File

@@ -1,25 +0,0 @@
#pragma once
#include "Arduino.h"
#include "Packet.hpp"
#include "../ParsingInformation.hpp"
#include "../Callbacks.hpp"
namespace AsyncMqttClientInternals {
class PubCompPacket : public Packet {
public:
explicit PubCompPacket(ParsingInformation* parsingInformation, OnPubCompInternalCallback callback);
~PubCompPacket();
void parseVariableHeader(char* data, size_t len, size_t* currentBytePosition);
void parsePayload(char* data, size_t len, size_t* currentBytePosition);
private:
ParsingInformation* _parsingInformation;
OnPubCompInternalCallback _callback;
uint8_t _bytePosition;
char _packetIdMsb;
uint16_t _packetId;
};
} // namespace AsyncMqttClientInternals

View File

@@ -1,30 +0,0 @@
#include "PubRecPacket.hpp"
using AsyncMqttClientInternals::PubRecPacket;
PubRecPacket::PubRecPacket(ParsingInformation* parsingInformation, OnPubRecInternalCallback callback)
: _parsingInformation(parsingInformation)
, _callback(callback)
, _bytePosition(0)
, _packetIdMsb(0)
, _packetId(0) {
}
PubRecPacket::~PubRecPacket() {
}
void PubRecPacket::parseVariableHeader(char* data, size_t len, size_t* currentBytePosition) {
char currentByte = data[(*currentBytePosition)++];
if (_bytePosition++ == 0) {
_packetIdMsb = currentByte;
} else {
_packetId = currentByte | _packetIdMsb << 8;
_parsingInformation->bufferState = BufferState::NONE;
_callback(_packetId);
}
}
void PubRecPacket::parsePayload(char* data, size_t len, size_t* currentBytePosition) {
(void)data;
(void)currentBytePosition;
}

View File

@@ -1,25 +0,0 @@
#pragma once
#include "Arduino.h"
#include "Packet.hpp"
#include "../ParsingInformation.hpp"
#include "../Callbacks.hpp"
namespace AsyncMqttClientInternals {
class PubRecPacket : public Packet {
public:
explicit PubRecPacket(ParsingInformation* parsingInformation, OnPubRecInternalCallback callback);
~PubRecPacket();
void parseVariableHeader(char* data, size_t len, size_t* currentBytePosition);
void parsePayload(char* data, size_t len, size_t* currentBytePosition);
private:
ParsingInformation* _parsingInformation;
OnPubRecInternalCallback _callback;
uint8_t _bytePosition;
char _packetIdMsb;
uint16_t _packetId;
};
} // namespace AsyncMqttClientInternals

View File

@@ -1,30 +0,0 @@
#include "PubRelPacket.hpp"
using AsyncMqttClientInternals::PubRelPacket;
PubRelPacket::PubRelPacket(ParsingInformation* parsingInformation, OnPubRelInternalCallback callback)
: _parsingInformation(parsingInformation)
, _callback(callback)
, _bytePosition(0)
, _packetIdMsb(0)
, _packetId(0) {
}
PubRelPacket::~PubRelPacket() {
}
void PubRelPacket::parseVariableHeader(char* data, size_t len, size_t* currentBytePosition) {
char currentByte = data[(*currentBytePosition)++];
if (_bytePosition++ == 0) {
_packetIdMsb = currentByte;
} else {
_packetId = currentByte | _packetIdMsb << 8;
_parsingInformation->bufferState = BufferState::NONE;
_callback(_packetId);
}
}
void PubRelPacket::parsePayload(char* data, size_t len, size_t* currentBytePosition) {
(void)data;
(void)currentBytePosition;
}

View File

@@ -1,25 +0,0 @@
#pragma once
#include "Arduino.h"
#include "Packet.hpp"
#include "../ParsingInformation.hpp"
#include "../Callbacks.hpp"
namespace AsyncMqttClientInternals {
class PubRelPacket : public Packet {
public:
explicit PubRelPacket(ParsingInformation* parsingInformation, OnPubRelInternalCallback callback);
~PubRelPacket();
void parseVariableHeader(char* data, size_t len, size_t* currentBytePosition);
void parsePayload(char* data, size_t len, size_t* currentBytePosition);
private:
ParsingInformation* _parsingInformation;
OnPubRelInternalCallback _callback;
uint8_t _bytePosition;
char _packetIdMsb;
uint16_t _packetId;
};
} // namespace AsyncMqttClientInternals

View File

@@ -1,91 +0,0 @@
#include "PublishPacket.hpp"
using AsyncMqttClientInternals::PublishPacket;
PublishPacket::PublishPacket(ParsingInformation* parsingInformation, OnMessageInternalCallback dataCallback, OnPublishInternalCallback completeCallback)
: _parsingInformation(parsingInformation)
, _dataCallback(dataCallback)
, _completeCallback(completeCallback)
, _dup(false)
, _qos(0)
, _retain(0)
, _bytePosition(0)
, _topicLengthMsb(0)
, _topicLength(0)
, _ignore(false)
, _packetIdMsb(0)
, _packetId(0)
, _payloadLength(0)
, _payloadBytesRead(0) {
_dup = _parsingInformation->packetFlags & HeaderFlag.PUBLISH_DUP;
_retain = _parsingInformation->packetFlags & HeaderFlag.PUBLISH_RETAIN;
char qosMasked = _parsingInformation->packetFlags & 0x06;
switch (qosMasked) {
case HeaderFlag.PUBLISH_QOS0:
_qos = 0;
break;
case HeaderFlag.PUBLISH_QOS1:
_qos = 1;
break;
case HeaderFlag.PUBLISH_QOS2:
_qos = 2;
break;
}
}
PublishPacket::~PublishPacket() {
}
void PublishPacket::parseVariableHeader(char* data, size_t len, size_t* currentBytePosition) {
char currentByte = data[(*currentBytePosition)++];
if (_bytePosition == 0) {
_topicLengthMsb = currentByte;
} else if (_bytePosition == 1) {
_topicLength = currentByte | _topicLengthMsb << 8;
if (_topicLength > _parsingInformation->maxTopicLength) {
_ignore = true;
} else {
_parsingInformation->topicBuffer[_topicLength] = '\0';
}
} else if (_bytePosition >= 2 && _bytePosition < 2 + _topicLength) {
// Starting from here, _ignore might be true
if (!_ignore) _parsingInformation->topicBuffer[_bytePosition - 2] = currentByte;
if (_bytePosition == 2 + _topicLength - 1 && _qos == 0) {
_preparePayloadHandling(_parsingInformation->remainingLength - (_bytePosition + 1));
return;
}
} else if (_bytePosition == 2 + _topicLength) {
_packetIdMsb = currentByte;
} else {
_packetId = currentByte | _packetIdMsb << 8;
_preparePayloadHandling(_parsingInformation->remainingLength - (_bytePosition + 1));
}
_bytePosition++;
}
void PublishPacket::_preparePayloadHandling(uint32_t payloadLength) {
_payloadLength = payloadLength;
if (payloadLength == 0) {
_parsingInformation->bufferState = BufferState::NONE;
if (!_ignore) {
_dataCallback(_parsingInformation->topicBuffer, nullptr, _qos, _dup, _retain, 0, 0, 0, _packetId);
_completeCallback(_packetId, _qos);
}
} else {
_parsingInformation->bufferState = BufferState::PAYLOAD;
}
}
void PublishPacket::parsePayload(char* data, size_t len, size_t* currentBytePosition) {
size_t remainToRead = len - (*currentBytePosition);
if (_payloadBytesRead + remainToRead > _payloadLength) remainToRead = _payloadLength - _payloadBytesRead;
if (!_ignore) _dataCallback(_parsingInformation->topicBuffer, data + (*currentBytePosition), _qos, _dup, _retain, remainToRead, _payloadBytesRead, _payloadLength, _packetId);
_payloadBytesRead += remainToRead;
(*currentBytePosition) += remainToRead;
if (_payloadBytesRead == _payloadLength) {
_parsingInformation->bufferState = BufferState::NONE;
if (!_ignore) _completeCallback(_packetId, _qos);
}
}

View File

@@ -1,38 +0,0 @@
#pragma once
#include "Arduino.h"
#include "Packet.hpp"
#include "../Flags.hpp"
#include "../ParsingInformation.hpp"
#include "../Callbacks.hpp"
namespace AsyncMqttClientInternals {
class PublishPacket : public Packet {
public:
explicit PublishPacket(ParsingInformation* parsingInformation, OnMessageInternalCallback dataCallback, OnPublishInternalCallback completeCallback);
~PublishPacket();
void parseVariableHeader(char* data, size_t len, size_t* currentBytePosition);
void parsePayload(char* data, size_t len, size_t* currentBytePosition);
private:
ParsingInformation* _parsingInformation;
OnMessageInternalCallback _dataCallback;
OnPublishInternalCallback _completeCallback;
void _preparePayloadHandling(uint32_t payloadLength);
bool _dup;
uint8_t _qos;
bool _retain;
uint8_t _bytePosition;
char _topicLengthMsb;
uint16_t _topicLength;
bool _ignore;
char _packetIdMsb;
uint16_t _packetId;
uint32_t _payloadLength;
uint32_t _payloadBytesRead;
};
} // namespace AsyncMqttClientInternals

View File

@@ -1,46 +0,0 @@
#include "SubAckPacket.hpp"
using AsyncMqttClientInternals::SubAckPacket;
SubAckPacket::SubAckPacket(ParsingInformation* parsingInformation, OnSubAckInternalCallback callback)
: _parsingInformation(parsingInformation)
, _callback(callback)
, _bytePosition(0)
, _packetIdMsb(0)
, _packetId(0) {
}
SubAckPacket::~SubAckPacket() {
}
void SubAckPacket::parseVariableHeader(char* data, size_t len, size_t* currentBytePosition) {
char currentByte = data[(*currentBytePosition)++];
if (_bytePosition++ == 0) {
_packetIdMsb = currentByte;
} else {
_packetId = currentByte | _packetIdMsb << 8;
_parsingInformation->bufferState = BufferState::PAYLOAD;
}
}
void SubAckPacket::parsePayload(char* data, size_t len, size_t* currentBytePosition) {
char status = data[(*currentBytePosition)++];
/* switch (status) {
case 0:
Serial.println("Success QoS 0");
break;
case 1:
Serial.println("Success QoS 1");
break;
case 2:
Serial.println("Success QoS 2");
break;
case 0x80:
Serial.println("Failure");
break;
} */
_parsingInformation->bufferState = BufferState::NONE;
_callback(_packetId, status);
}

View File

@@ -1,25 +0,0 @@
#pragma once
#include "Arduino.h"
#include "Packet.hpp"
#include "../ParsingInformation.hpp"
#include "../Callbacks.hpp"
namespace AsyncMqttClientInternals {
class SubAckPacket : public Packet {
public:
explicit SubAckPacket(ParsingInformation* parsingInformation, OnSubAckInternalCallback callback);
~SubAckPacket();
void parseVariableHeader(char* data, size_t len, size_t* currentBytePosition);
void parsePayload(char* data, size_t len, size_t* currentBytePosition);
private:
ParsingInformation* _parsingInformation;
OnSubAckInternalCallback _callback;
uint8_t _bytePosition;
char _packetIdMsb;
uint16_t _packetId;
};
} // namespace AsyncMqttClientInternals

View File

@@ -1,30 +0,0 @@
#include "UnsubAckPacket.hpp"
using AsyncMqttClientInternals::UnsubAckPacket;
UnsubAckPacket::UnsubAckPacket(ParsingInformation* parsingInformation, OnUnsubAckInternalCallback callback)
: _parsingInformation(parsingInformation)
, _callback(callback)
, _bytePosition(0)
, _packetIdMsb(0)
, _packetId(0) {
}
UnsubAckPacket::~UnsubAckPacket() {
}
void UnsubAckPacket::parseVariableHeader(char* data, size_t len, size_t* currentBytePosition) {
char currentByte = data[(*currentBytePosition)++];
if (_bytePosition++ == 0) {
_packetIdMsb = currentByte;
} else {
_packetId = currentByte | _packetIdMsb << 8;
_parsingInformation->bufferState = BufferState::NONE;
_callback(_packetId);
}
}
void UnsubAckPacket::parsePayload(char* data, size_t len, size_t* currentBytePosition) {
(void)data;
(void)currentBytePosition;
}

View File

@@ -1,25 +0,0 @@
#pragma once
#include "Arduino.h"
#include "Packet.hpp"
#include "../ParsingInformation.hpp"
#include "../Callbacks.hpp"
namespace AsyncMqttClientInternals {
class UnsubAckPacket : public Packet {
public:
explicit UnsubAckPacket(ParsingInformation* parsingInformation, OnUnsubAckInternalCallback callback);
~UnsubAckPacket();
void parseVariableHeader(char* data, size_t len, size_t* currentBytePosition);
void parsePayload(char* data, size_t len, size_t* currentBytePosition);
private:
ParsingInformation* _parsingInformation;
OnUnsubAckInternalCallback _callback;
uint8_t _bytePosition;
char _packetIdMsb;
uint16_t _packetId;
};
} // namespace AsyncMqttClientInternals

View File

@@ -1,21 +0,0 @@
#pragma once
namespace AsyncMqttClientInternals {
enum class BufferState : uint8_t {
NONE = 0,
REMAINING_LENGTH = 2,
VARIABLE_HEADER = 3,
PAYLOAD = 4
};
struct ParsingInformation {
BufferState bufferState;
uint16_t maxTopicLength;
char* topicBuffer;
uint8_t packetType;
uint16_t packetFlags;
uint32_t remainingLength;
};
} // namespace AsyncMqttClientInternals

View File

@@ -1,13 +0,0 @@
#pragma once
namespace AsyncMqttClientInternals {
struct PendingPubRel {
uint16_t packetId;
};
struct PendingAck {
uint8_t packetType;
uint8_t headerFlag;
uint16_t packetId;
};
} // namespace AsyncMqttClientInternals

View File

@@ -1,21 +0,0 @@
The MIT License (MIT)
Copyright (c) 2015 Marvin Roger
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -1,18 +0,0 @@
Async MQTT client for ESP8266 and ESP32 (Github: https://github.com/marvinroger/async-mqtt-client)
=============================
[![Build Status](https://img.shields.io/travis/marvinroger/async-mqtt-client/master.svg?style=flat-square)](https://travis-ci.org/marvinroger/async-mqtt-client)
An Arduino for ESP8266 and ESP32 asynchronous [MQTT](http://mqtt.org/) client implementation, built on [me-no-dev/ESPAsyncTCP (ESP8266)](https://github.com/me-no-dev/ESPAsyncTCP) | [me-no-dev/AsyncTCP (ESP32)](https://github.com/me-no-dev/AsyncTCP) .
## Features
* Compliant with the 3.1.1 version of the protocol
* Fully asynchronous
* Subscribe at QoS 0, 1 and 2
* Publish at QoS 0, 1 and 2
* SSL/TLS support
* Available in the [PlatformIO registry](http://platformio.org/lib/show/346/AsyncMqttClient)
## Requirements, installation and usage
The project is documented in the [/docs folder](docs).

View File

@@ -565,93 +565,82 @@ void handleNotifications()
return;
}
if (!receiveDirect) return;
if (receiveDirect) {
//TPM2.NET
if (udpIn[0] == 0x9c) {
//WARNING: this code assumes that the final TMP2.NET payload is evenly distributed if using multiple packets (ie. frame size is constant)
//if the number of LEDs in your installation doesn't allow that, please include padding bytes at the end of the last packet
byte tpmType = udpIn[1];
if (tpmType == 0xaa) { //TPM2.NET polling, expect answer
sendTPM2Ack(); return;
}
if (tpmType != 0xda) return; //return if notTPM2.NET data
//TPM2.NET
if (udpIn[0] == 0x9c)
{
//WARNING: this code assumes that the final TMP2.NET payload is evenly distributed if using multiple packets (ie. frame size is constant)
//if the number of LEDs in your installation doesn't allow that, please include padding bytes at the end of the last packet
byte tpmType = udpIn[1];
if (tpmType == 0xaa) { //TPM2.NET polling, expect answer
sendTPM2Ack(); return;
realtimeIP = (isSupp) ? notifier2Udp.remoteIP() : notifierUdp.remoteIP();
realtimeLock(realtimeTimeoutMs, REALTIME_MODE_TPM2NET);
if (realtimeOverride) return;
tpmPacketCount++; //increment the packet count
if (tpmPacketCount == 1) tpmPayloadFrameSize = (udpIn[2] << 8) + udpIn[3]; //save frame size for the whole payload if this is the first packet
byte packetNum = udpIn[4]; //starts with 1!
byte numPackets = udpIn[5];
unsigned id = (tpmPayloadFrameSize/3)*(packetNum-1); //start LED
unsigned totalLen = strip.getLengthTotal();
for (size_t i = 6; i < tpmPayloadFrameSize + 4U && id < totalLen; i += 3, id++) {
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0);
}
if (tpmPacketCount == numPackets) { //reset packet count and show if all packets were received
tpmPacketCount = 0;
if (useMainSegmentOnly) strip.trigger();
else strip.show();
}
return;
}
if (tpmType != 0xda) return; //return if notTPM2.NET data
realtimeIP = (isSupp) ? notifier2Udp.remoteIP() : notifierUdp.remoteIP();
realtimeLock(realtimeTimeoutMs, REALTIME_MODE_TPM2NET);
if (realtimeOverride) return;
//UDP realtime: 1 warls 2 drgb 3 drgbw 4 dnrgb 5 dnrgbw
if (udpIn[0] > 0 && udpIn[0] < 6) {
realtimeIP = (isSupp) ? notifier2Udp.remoteIP() : notifierUdp.remoteIP();
DEBUG_PRINTLN(realtimeIP);
if (packetSize < 2) return;
tpmPacketCount++; //increment the packet count
if (tpmPacketCount == 1) tpmPayloadFrameSize = (udpIn[2] << 8) + udpIn[3]; //save frame size for the whole payload if this is the first packet
byte packetNum = udpIn[4]; //starts with 1!
byte numPackets = udpIn[5];
if (udpIn[1] == 0) {
realtimeTimeout = 0; // cancel realtime mode immediately
return;
} else {
realtimeLock(udpIn[1]*1000 +1, REALTIME_MODE_UDP);
}
if (realtimeOverride) return;
unsigned id = (tpmPayloadFrameSize/3)*(packetNum-1); //start LED
unsigned totalLen = strip.getLengthTotal();
for (size_t i = 6; i < tpmPayloadFrameSize + 4U && id < totalLen; i += 3, id++) {
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0);
}
if (tpmPacketCount == numPackets) { //reset packet count and show if all packets were received
tpmPacketCount = 0;
unsigned totalLen = strip.getLengthTotal();
if (udpIn[0] == 1 && packetSize > 5) { //warls
for (size_t i = 2; i < packetSize -3; i += 4) {
setRealtimePixel(udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3], 0);
}
} else if (udpIn[0] == 2 && packetSize > 4) { //drgb
for (size_t i = 2, id = 0; i < packetSize -2 && id < totalLen; i += 3, id++)
{
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0);
}
} else if (udpIn[0] == 3 && packetSize > 6) { //drgbw
for (size_t i = 2, id = 0; i < packetSize -3 && id < totalLen; i += 4, id++) {
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3]);
}
} else if (udpIn[0] == 4 && packetSize > 7) { //dnrgb
unsigned id = ((udpIn[3] << 0) & 0xFF) + ((udpIn[2] << 8) & 0xFF00);
for (size_t i = 4; i < packetSize -2 && id < totalLen; i += 3, id++) {
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0);
}
} else if (udpIn[0] == 5 && packetSize > 8) { //dnrgbw
unsigned id = ((udpIn[3] << 0) & 0xFF) + ((udpIn[2] << 8) & 0xFF00);
for (size_t i = 4; i < packetSize -2 && id < totalLen; i += 4, id++) {
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3]);
}
}
if (useMainSegmentOnly) strip.trigger();
else strip.show();
}
return;
}
//UDP realtime: 1 warls 2 drgb 3 drgbw 4 dnrgb 5 dnrgbw
if (udpIn[0] > 0 && udpIn[0] < 6)
{
realtimeIP = (isSupp) ? notifier2Udp.remoteIP() : notifierUdp.remoteIP();
DEBUG_PRINTLN(realtimeIP);
if (packetSize < 2) return;
if (udpIn[1] == 0) {
realtimeTimeout = 0; // cancel realtime mode immediately
return;
} else {
realtimeLock(udpIn[1]*1000 +1, REALTIME_MODE_UDP);
}
if (realtimeOverride) return;
unsigned totalLen = strip.getLengthTotal();
if (udpIn[0] == 1 && packetSize > 5) //warls
{
for (size_t i = 2; i < packetSize -3; i += 4)
{
setRealtimePixel(udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3], 0);
}
} else if (udpIn[0] == 2 && packetSize > 4) //drgb
{
for (size_t i = 2, id = 0; i < packetSize -2 && id < totalLen; i += 3, id++)
{
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0);
}
} else if (udpIn[0] == 3 && packetSize > 6) //drgbw
{
for (size_t i = 2, id = 0; i < packetSize -3 && id < totalLen; i += 4, id++)
{
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3]);
}
} else if (udpIn[0] == 4 && packetSize > 7) //dnrgb
{
unsigned id = ((udpIn[3] << 0) & 0xFF) + ((udpIn[2] << 8) & 0xFF00);
for (size_t i = 4; i < packetSize -2 && id < totalLen; i += 3, id++)
{
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0);
}
} else if (udpIn[0] == 5 && packetSize > 8) //dnrgbw
{
unsigned id = ((udpIn[3] << 0) & 0xFF) + ((udpIn[2] << 8) & 0xFF00);
for (size_t i = 4; i < packetSize -2 && id < totalLen; i += 4, id++)
{
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3]);
}
}
if (useMainSegmentOnly) strip.trigger();
else strip.show();
return;
}
// API over UDP
@@ -669,6 +658,8 @@ void handleNotifications()
}
releaseJSONBufferLock();
}
UsermodManager::onUdpPacket(udpIn, packetSize);
}

View File

@@ -68,6 +68,10 @@ bool UsermodManager::onEspNowMessage(uint8_t* sender, uint8_t* payload, uint8_t
return false;
}
#endif
bool UsermodManager::onUdpPacket(uint8_t* payload, size_t len) {
for (auto mod = _usermod_table_begin; mod < _usermod_table_end; ++mod) if ((*mod)->onUdpPacket(payload, len)) return true;
return false;
}
void UsermodManager::onUpdateBegin(bool init) { for (auto mod = _usermod_table_begin; mod < _usermod_table_end; ++mod) (*mod)->onUpdateBegin(init); } // notify usermods that update is to begin
void UsermodManager::onStateChange(uint8_t mode) { for (auto mod = _usermod_table_begin; mod < _usermod_table_end; ++mod) (*mod)->onStateChange(mode); } // notify usermods that WLED state changed

View File

@@ -629,92 +629,186 @@ int32_t hw_random(int32_t lowerlimit, int32_t upperlimit) {
return hw_random(diff) + lowerlimit;
}
#if !defined(ESP8266) && !defined(CONFIG_IDF_TARGET_ESP32C3) // ESP8266 does not support PSRAM, ESP32-C3 does not have PSRAM
// p_x prefer PSRAM, d_x prefer DRAM
void *p_malloc(size_t size) {
int caps1 = MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT;
int caps2 = MALLOC_CAP_DEFAULT | MALLOC_CAP_8BIT;
if (psramSafe) {
if (heap_caps_get_free_size(caps2) > 3*MIN_HEAP_SIZE && size < 512) std::swap(caps1, caps2); // use DRAM for small alloactions & when heap is plenty
return heap_caps_malloc_prefer(size, 2, caps1, caps2); // otherwise prefer PSRAM if it exists
}
return heap_caps_malloc(size, caps2);
}
// PSRAM compile time checks to provide info for misconfigured env
#if defined(BOARD_HAS_PSRAM)
#if defined(IDF_TARGET_ESP32C3) || defined(ESP8266)
#error "ESP32-C3 and ESP8266 with PSRAM is not supported, please remove BOARD_HAS_PSRAM definition"
#else
// BOARD_HAS_PSRAM also means that compiler flag "-mfix-esp32-psram-cache-issue" has to be used
#warning "BOARD_HAS_PSRAM defined, make sure to use -mfix-esp32-psram-cache-issue to prevent issues on rev.1 ESP32 boards \
see https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/external-ram.html#esp32-rev-v1-0"
#endif
#else
#if !defined(IDF_TARGET_ESP32C3) && !defined(ESP8266)
#pragma message("BOARD_HAS_PSRAM not defined, not using PSRAM.")
#endif
#endif
void *p_realloc(void *ptr, size_t size) {
int caps1 = MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT;
int caps2 = MALLOC_CAP_DEFAULT | MALLOC_CAP_8BIT;
if (psramSafe) {
if (heap_caps_get_free_size(caps2) > 3*MIN_HEAP_SIZE && size < 512) std::swap(caps1, caps2); // use DRAM for small alloactions & when heap is plenty
return heap_caps_realloc_prefer(ptr, size, 2, caps1, caps2); // otherwise prefer PSRAM if it exists
// memory allocation functions with minimum free heap size check
#ifdef ESP8266
static void *validateFreeHeap(void *buffer) {
// make sure there is enough free heap left if buffer was allocated in DRAM region, free it if not
if (getContiguousFreeHeap() < MIN_HEAP_SIZE) {
free(buffer);
return nullptr;
}
return heap_caps_realloc(ptr, size, caps2);
}
// realloc with malloc fallback, original buffer is freed if realloc fails but not copied!
void *p_realloc_malloc(void *ptr, size_t size) {
void *newbuf = p_realloc(ptr, size); // try realloc first
if (newbuf) return newbuf; // realloc successful
p_free(ptr); // free old buffer if realloc failed
return p_malloc(size); // fallback to malloc
}
void *p_calloc(size_t count, size_t size) {
int caps1 = MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT;
int caps2 = MALLOC_CAP_DEFAULT | MALLOC_CAP_8BIT;
if (psramSafe) {
if (heap_caps_get_free_size(caps2) > 3*MIN_HEAP_SIZE && size < 512) std::swap(caps1, caps2); // use DRAM for small alloactions & when heap is plenty
return heap_caps_calloc_prefer(count, size, 2, caps1, caps2); // otherwise prefer PSRAM if it exists
}
return heap_caps_calloc(count, size, caps2);
return buffer;
}
void *d_malloc(size_t size) {
int caps1 = MALLOC_CAP_DEFAULT | MALLOC_CAP_8BIT;
int caps2 = MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT;
if (psramSafe) {
if (heap_caps_get_largest_free_block(caps1) < 3*MIN_HEAP_SIZE && size > MIN_HEAP_SIZE) std::swap(caps1, caps2); // prefer PSRAM for large alloactions & when DRAM is low
return heap_caps_malloc_prefer(size, 2, caps1, caps2); // otherwise prefer DRAM
}
return heap_caps_malloc(size, caps1);
// note: using "if (getContiguousFreeHeap() > MIN_HEAP_SIZE + size)" did perform worse in tests with regards to keeping heap healthy and UI working
void *buffer = malloc(size);
return validateFreeHeap(buffer);
}
void *d_realloc(void *ptr, size_t size) {
int caps1 = MALLOC_CAP_DEFAULT | MALLOC_CAP_8BIT;
int caps2 = MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT;
if (psramSafe) {
if (heap_caps_get_largest_free_block(caps1) < 3*MIN_HEAP_SIZE && size > MIN_HEAP_SIZE) std::swap(caps1, caps2); // prefer PSRAM for large alloactions & when DRAM is low
return heap_caps_realloc_prefer(ptr, size, 2, caps1, caps2); // otherwise prefer DRAM
void *d_calloc(size_t count, size_t size) {
void *buffer = calloc(count, size);
return validateFreeHeap(buffer);
}
// realloc with malloc fallback, note: on ESPS8266 there is no safe way to ensure MIN_HEAP_SIZE during realloc()s, free buffer and allocate new one
void *d_realloc_malloc(void *ptr, size_t size) {
//void *buffer = realloc(ptr, size);
//buffer = validateFreeHeap(buffer);
//if (buffer) return buffer; // realloc successful
//d_free(ptr); // free old buffer if realloc failed (or min heap was exceeded)
//return d_malloc(size); // fallback to malloc
free(ptr);
return d_malloc(size);
}
#else
static void *validateFreeHeap(void *buffer) {
// make sure there is enough free heap left if buffer was allocated in DRAM region, free it if not
// TODO: between allocate and free, heap can run low (async web access), only IDF V5 allows for a pre-allocation-check of all free blocks
if ((uintptr_t)buffer > SOC_DRAM_LOW && (uintptr_t)buffer < SOC_DRAM_HIGH && getContiguousFreeHeap() < MIN_HEAP_SIZE) {
free(buffer);
return nullptr;
}
return heap_caps_realloc(ptr, size, caps1);
return buffer;
}
void *d_malloc(size_t size) {
void *buffer;
#if defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3)
// the newer ESP32 variants have byte-accessible fast RTC memory that can be used as heap, access speed is on-par with DRAM
// the system does prefer normal DRAM until full, since free RTC memory is ~7.5k only, its below the minimum heap threshold and needs to be allocated explicitly
// use RTC RAM for small allocations to improve fragmentation or if DRAM is running low
if (size < 256 || getContiguousFreeHeap() < 2*MIN_HEAP_SIZE + size)
buffer = heap_caps_malloc_prefer(size, 2, MALLOC_CAP_RTCRAM, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
else
#endif
buffer = heap_caps_malloc(size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); // allocate in any available heap memory
buffer = validateFreeHeap(buffer); // make sure there is enough free heap left
#ifdef BOARD_HAS_PSRAM
if (!buffer)
return heap_caps_malloc(size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT); // DRAM failed, use PSRAM if available
#endif
return buffer;
}
void *d_calloc(size_t count, size_t size) {
void *buffer = d_malloc(count * size);
if (buffer) memset(buffer, 0, count * size); // clear allocated buffer
return buffer;
}
// realloc with malloc fallback, original buffer is freed if realloc fails but not copied!
void *d_realloc_malloc(void *ptr, size_t size) {
void *newbuf = d_realloc(ptr, size); // try realloc first
if (newbuf) return newbuf; // realloc successful
d_free(ptr); // free old buffer if realloc failed
void *buffer = heap_caps_realloc(ptr, size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
buffer = validateFreeHeap(buffer);
if (buffer) return buffer; // realloc successful
d_free(ptr); // free old buffer if realloc failed (or min heap was exceeded)
return d_malloc(size); // fallback to malloc
}
void *d_calloc(size_t count, size_t size) {
int caps1 = MALLOC_CAP_DEFAULT | MALLOC_CAP_8BIT;
int caps2 = MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT;
if (psramSafe) {
if (size > MIN_HEAP_SIZE) std::swap(caps1, caps2); // prefer PSRAM for large alloactions
return heap_caps_calloc_prefer(count, size, 2, caps1, caps2); // otherwise prefer DRAM
}
return heap_caps_calloc(count, size, caps1);
#ifdef BOARD_HAS_PSRAM
// p_xalloc: prefer PSRAM, use DRAM as fallback
void *p_malloc(size_t size) {
void *buffer = heap_caps_malloc_prefer(size, 2, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
return validateFreeHeap(buffer);
}
#else // ESP8266 & ESP32-C3
void *p_calloc(size_t count, size_t size) {
void *buffer = p_malloc(count * size);
if (buffer) memset(buffer, 0, count * size); // clear allocated buffer
return buffer;
}
// realloc with malloc fallback, original buffer is freed if realloc fails but not copied!
void *realloc_malloc(void *ptr, size_t size) {
void *newbuf = realloc(ptr, size); // try realloc first
if (newbuf) return newbuf; // realloc successful
free(ptr); // free old buffer if realloc failed
return malloc(size); // fallback to malloc
void *p_realloc_malloc(void *ptr, size_t size) {
void *buffer = heap_caps_realloc(ptr, size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
if (buffer) return buffer; // realloc successful
p_free(ptr); // free old buffer if realloc failed
return p_malloc(size); // fallback to malloc
}
#endif
#endif
// allocation function for buffers like pixel-buffers and segment data
// optimises the use of memory types to balance speed and heap availability, always favours DRAM if possible
// if multiple conflicting types are defined, the lowest bits of "type" take priority (see fcn_declare.h for types)
void *allocate_buffer(size_t size, uint32_t type) {
void *buffer = nullptr;
#ifdef CONFIG_IDF_TARGET_ESP32
// only classic ESP32 has "32bit accessible only" aka IRAM type. Using it frees up normal DRAM for other purposes
// this memory region is used for IRAM_ATTR functions, whatever is left is unused and can be used for pixel buffers
// prefer this type over PSRAM as it is slightly faster, except for _pixels where it is on-par as PSRAM-caching does a good job for mostly sequential access
if (type & BFRALLOC_NOBYTEACCESS) {
// prefer 32bit region, then PSRAM, fallback to any heap. Note: if adding "INTERNAL"-flag this wont work
buffer = heap_caps_malloc_prefer(size, 3, MALLOC_CAP_32BIT, MALLOC_CAP_SPIRAM, MALLOC_CAP_8BIT);
buffer = validateFreeHeap(buffer);
}
else
#endif
#if !defined(BOARD_HAS_PSRAM)
buffer = d_malloc(size);
#else
if (type & BFRALLOC_PREFER_DRAM) {
if (getContiguousFreeHeap() < 3*(MIN_HEAP_SIZE/2) + size && size > PSRAM_THRESHOLD)
buffer = p_malloc(size); // prefer PSRAM for large allocations & when DRAM is low
else
buffer = d_malloc(size); // allocate in DRAM if enough free heap is available, PSRAM as fallback
}
else if (type & BFRALLOC_ENFORCE_DRAM)
buffer = heap_caps_malloc(size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); // use DRAM only, otherwise return nullptr
else if (type & BFRALLOC_PREFER_PSRAM) {
// if DRAM is plenty, prefer it over PSRAM for speed, reserve enough DRAM for segment data: if MAX_SEGMENT_DATA is exceeded, always uses PSRAM
if (getContiguousFreeHeap() > 4*MIN_HEAP_SIZE + size + ((uint32_t)(MAX_SEGMENT_DATA - Segment::getUsedSegmentData())))
buffer = d_malloc(size);
else
buffer = p_malloc(size); // prefer PSRAM
}
else if (type & BFRALLOC_ENFORCE_PSRAM)
buffer = heap_caps_malloc(size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT); // use PSRAM only, otherwise return nullptr
buffer = validateFreeHeap(buffer);
#endif
if (buffer && (type & BFRALLOC_CLEAR))
memset(buffer, 0, size); // clear allocated buffer
/*
#if !defined(ESP8266) && defined(WLED_DEBUG)
if (buffer) {
DEBUG_PRINTF_P(PSTR("*Buffer allocated: size:%d, address:%p"), size, (uintptr_t)buffer);
if ((uintptr_t)buffer > SOC_DRAM_LOW && (uintptr_t)buffer < SOC_DRAM_HIGH)
DEBUG_PRINTLN(F(" in DRAM"));
#ifndef CONFIG_IDF_TARGET_ESP32C3
else if ((uintptr_t)buffer > SOC_EXTRAM_DATA_LOW && (uintptr_t)buffer < SOC_EXTRAM_DATA_HIGH)
DEBUG_PRINTLN(F(" in PSRAM"));
#endif
#ifdef CONFIG_IDF_TARGET_ESP32
else if ((uintptr_t)buffer > SOC_IRAM_LOW && (uintptr_t)buffer < SOC_IRAM_HIGH)
DEBUG_PRINTLN(F(" in IRAM")); // only used on ESP32 (MALLOC_CAP_32BIT)
#else
else if ((uintptr_t)buffer > SOC_RTC_DRAM_LOW && (uintptr_t)buffer < SOC_RTC_DRAM_HIGH)
DEBUG_PRINTLN(F(" in RTCRAM")); // not available on ESP32
#endif
else
DEBUG_PRINTLN(F(" in ???")); // unknown (check soc.h for other memory regions)
} else
DEBUG_PRINTF_P(PSTR("Buffer allocation failed: size:%d\n"), size);
#endif
*/
return buffer;
}
// bootloop detection and handling
// checks if the ESP reboots multiple times due to a crash or watchdog timeout

View File

@@ -171,7 +171,7 @@ void WLED::loop()
// reconnect WiFi to clear stale allocations if heap gets too low
if (millis() - heapTime > 15000) {
uint32_t heap = ESP.getFreeHeap();
uint32_t heap = getFreeHeapSize();
if (heap < MIN_HEAP_SIZE && lastHeap < MIN_HEAP_SIZE) {
DEBUG_PRINTF_P(PSTR("Heap too low! %u\n"), heap);
forceReconnect = true;
@@ -241,13 +241,37 @@ void WLED::loop()
DEBUG_PRINTLN(F("---DEBUG INFO---"));
DEBUG_PRINTF_P(PSTR("Runtime: %lu\n"), millis());
DEBUG_PRINTF_P(PSTR("Unix time: %u,%03u\n"), toki.getTime().sec, toki.getTime().ms);
DEBUG_PRINTF_P(PSTR("Free heap: %u\n"), ESP.getFreeHeap());
#if defined(ARDUINO_ARCH_ESP32)
DEBUG_PRINTLN(F("=== Memory Info ==="));
// Internal DRAM (standard 8-bit accessible heap)
size_t dram_free = heap_caps_get_free_size(MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
size_t dram_largest = heap_caps_get_largest_free_block(MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
DEBUG_PRINTF_P(PSTR("DRAM 8-bit: Free: %7u bytes | Largest block: %7u bytes\n"), dram_free, dram_largest);
#ifdef BOARD_HAS_PSRAM
size_t psram_free = heap_caps_get_free_size(MALLOC_CAP_SPIRAM);
size_t psram_largest = heap_caps_get_largest_free_block(MALLOC_CAP_SPIRAM);
DEBUG_PRINTF_P(PSTR("PSRAM: Free: %7u bytes | Largest block: %6u bytes\n"), psram_free, psram_largest);
#endif
#if defined(CONFIG_IDF_TARGET_ESP32)
// 32-bit DRAM (not byte accessible, only available on ESP32)
size_t dram32_free = heap_caps_get_free_size(MALLOC_CAP_32BIT | MALLOC_CAP_INTERNAL) - dram_free; // returns all 32bit DRAM, subtract 8bit DRAM
//size_t dram32_largest = heap_caps_get_largest_free_block(MALLOC_CAP_32BIT | MALLOC_CAP_INTERNAL); // returns largest DRAM block -> not useful
DEBUG_PRINTF_P(PSTR("DRAM 32-bit: Free: %7u bytes | Largest block: N/A\n"), dram32_free);
#else
// Fast RTC Memory (not available on ESP32)
size_t rtcram_free = heap_caps_get_free_size(MALLOC_CAP_RTCRAM);
size_t rtcram_largest = heap_caps_get_largest_free_block(MALLOC_CAP_RTCRAM);
DEBUG_PRINTF_P(PSTR("RTC RAM: Free: %7u bytes | Largest block: %7u bytes\n"), rtcram_free, rtcram_largest);
#endif
if (psramFound()) {
DEBUG_PRINTF_P(PSTR("PSRAM: %dkB/%dkB\n"), ESP.getFreePsram()/1024, ESP.getPsramSize()/1024);
if (!psramSafe) DEBUG_PRINTLN(F("Not using PSRAM."));
#ifndef BOARD_HAS_PSRAM
DEBUG_PRINTLN(F("BOARD_HAS_PSRAM not defined, not using PSRAM."));
#endif
}
DEBUG_PRINTF_P(PSTR("TX power: %d/%d\n"), WiFi.getTxPower(), txPower);
#else // ESP8266
DEBUG_PRINTF_P(PSTR("Free heap/contiguous: %u/%u\n"), getFreeHeapSize(), getContiguousFreeHeap());
#endif
DEBUG_PRINTF_P(PSTR("Wifi state: %d\n"), WiFi.status());
#ifndef WLED_DISABLE_ESPNOW
@@ -367,20 +391,16 @@ void WLED::setup()
DEBUG_PRINTF_P(PSTR("esp8266 @ %u MHz.\nCore: %s\n"), ESP.getCpuFreqMHz(), ESP.getCoreVersion());
DEBUG_PRINTF_P(PSTR("FLASH: %u MB\n"), (ESP.getFlashChipSize()/1024)/1024);
#endif
DEBUG_PRINTF_P(PSTR("heap %u\n"), ESP.getFreeHeap());
DEBUG_PRINTF_P(PSTR("heap %u\n"), getFreeHeapSize());
#if defined(BOARD_HAS_PSRAM)
// if JSON buffer allocation fails requestJsonBufferLock() will always return false preventing crashes
pDoc = new PSRAMDynamicJsonDocument(2 * JSON_BUFFER_SIZE);
DEBUG_PRINTF_P(PSTR("JSON buffer size: %ubytes\n"), (2 * JSON_BUFFER_SIZE));
DEBUG_PRINTF_P(PSTR("PSRAM: %dkB/%dkB\n"), ESP.getFreePsram()/1024, ESP.getPsramSize()/1024);
#endif
#if defined(ARDUINO_ARCH_ESP32)
// BOARD_HAS_PSRAM also means that a compiler flag "-mfix-esp32-psram-cache-issue" was used and so PSRAM is safe to use on rev.1 ESP32
#if !defined(BOARD_HAS_PSRAM) && !(defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3) || defined(CONFIG_IDF_TARGET_ESP32C3))
if (psramFound() && ESP.getChipRevision() < 3) psramSafe = false;
if (!psramSafe) DEBUG_PRINTLN(F("Not using PSRAM."));
#endif
pDoc = new PSRAMDynamicJsonDocument((psramSafe && psramFound() ? 2 : 1)*JSON_BUFFER_SIZE);
DEBUG_PRINTF_P(PSTR("JSON buffer allocated: %u\n"), (psramSafe && psramFound() ? 2 : 1)*JSON_BUFFER_SIZE);
// if the above fails requestJsonBufferLock() will always return false preventing crashes
if (psramFound()) {
DEBUG_PRINTF_P(PSTR("PSRAM: %dkB/%dkB\n"), ESP.getFreePsram()/1024, ESP.getPsramSize()/1024);
}
DEBUG_PRINTF_P(PSTR("TX power: %d/%d\n"), WiFi.getTxPower(), txPower);
#endif
@@ -395,7 +415,7 @@ void WLED::setup()
PinManager::allocatePin(2, true, PinOwner::DMX);
#endif
DEBUG_PRINTF_P(PSTR("heap %u\n"), ESP.getFreeHeap());
DEBUG_PRINTF_P(PSTR("heap %u\n"), getFreeHeapSize());
bool fsinit = false;
DEBUGFS_PRINTLN(F("Mount FS"));
@@ -433,7 +453,7 @@ void WLED::setup()
}
DEBUG_PRINTLN(F("Reading config"));
bool needsCfgSave = deserializeConfigFromFS();
DEBUG_PRINTF_P(PSTR("heap %u\n"), ESP.getFreeHeap());
DEBUG_PRINTF_P(PSTR("heap %u\n"), getFreeHeapSize());
#if defined(STATUSLED) && STATUSLED>=0
if (!PinManager::isPinAllocated(STATUSLED)) {
@@ -445,12 +465,12 @@ void WLED::setup()
DEBUG_PRINTLN(F("Initializing strip"));
beginStrip();
DEBUG_PRINTF_P(PSTR("heap %u\n"), ESP.getFreeHeap());
DEBUG_PRINTF_P(PSTR("heap %u\n"), getFreeHeapSize());
DEBUG_PRINTLN(F("Usermods setup"));
userSetup();
UsermodManager::setup();
DEBUG_PRINTF_P(PSTR("heap %u\n"), ESP.getFreeHeap());
DEBUG_PRINTF_P(PSTR("heap %u\n"), getFreeHeapSize());
if (needsCfgSave) serializeConfigToFS(); // usermods required new parameters; need to wait for strip to be initialised #4752
@@ -515,13 +535,13 @@ void WLED::setup()
// HTTP server page init
DEBUG_PRINTLN(F("initServer"));
initServer();
DEBUG_PRINTF_P(PSTR("heap %u\n"), ESP.getFreeHeap());
DEBUG_PRINTF_P(PSTR("heap %u\n"), getFreeHeapSize());
#ifndef WLED_DISABLE_INFRARED
// init IR
DEBUG_PRINTLN(F("initIR"));
initIR();
DEBUG_PRINTF_P(PSTR("heap %u\n"), ESP.getFreeHeap());
DEBUG_PRINTF_P(PSTR("heap %u\n"), getFreeHeapSize());
#endif
// Seed FastLED random functions with an esp random value, which already works properly at this point.

View File

@@ -155,7 +155,7 @@
#include "src/dependencies/e131/ESPAsyncE131.h"
#ifndef WLED_DISABLE_MQTT
#include "src/dependencies/async-mqtt-client/AsyncMqttClient.h"
#include <AsyncMqttClient.h>
#endif
#define ARDUINOJSON_DECODE_UNICODE 0
@@ -167,16 +167,13 @@
// The following is a construct to enable code to compile without it.
// There is a code that will still not use PSRAM though:
// AsyncJsonResponse is a derived class that implements DynamicJsonDocument (AsyncJson-v6.h)
#if defined(ARDUINO_ARCH_ESP32)
extern bool psramSafe;
#if defined(BOARD_HAS_PSRAM)
struct PSRAM_Allocator {
void* allocate(size_t size) {
if (psramSafe && psramFound()) return ps_malloc(size); // use PSRAM if it exists
else return malloc(size); // fallback
return ps_malloc(size); // use PSRAM
}
void* reallocate(void* ptr, size_t new_size) {
if (psramSafe && psramFound()) return ps_realloc(ptr, new_size); // use PSRAM if it exists
else return realloc(ptr, new_size); // fallback
return ps_realloc(ptr, new_size); // use PSRAM
}
void deallocate(void* pointer) {
free(pointer);
@@ -894,8 +891,6 @@ WLED_GLOBAL byte optionType;
WLED_GLOBAL bool configNeedsWrite _INIT(false); // flag to initiate saving of config
WLED_GLOBAL bool doReboot _INIT(false); // flag to initiate reboot from async handlers
WLED_GLOBAL bool psramSafe _INIT(true); // is it safe to use PSRAM (on ESP32 rev.1; compiler fix used "-mfix-esp32-psram-cache-issue")
// status led
#if defined(STATUSLED)
WLED_GLOBAL unsigned long ledStatusLastMillis _INIT(0);
@@ -969,8 +964,11 @@ WLED_GLOBAL int8_t spi_sclk _INIT(SPISCLKPIN);
// global ArduinoJson buffer
#if defined(ARDUINO_ARCH_ESP32)
WLED_GLOBAL JsonDocument *pDoc _INIT(nullptr);
WLED_GLOBAL SemaphoreHandle_t jsonBufferLockMutex _INIT(xSemaphoreCreateRecursiveMutex());
#endif
#ifdef BOARD_HAS_PSRAM
// if board has PSRAM, use it for JSON document (allocated in setup())
WLED_GLOBAL JsonDocument *pDoc _INIT(nullptr);
#else
WLED_GLOBAL StaticJsonDocument<JSON_BUFFER_SIZE> gDoc;
WLED_GLOBAL JsonDocument *pDoc _INIT(&gDoc);

View File

@@ -368,7 +368,7 @@ void initServer()
});
server.on(F("/freeheap"), HTTP_GET, [](AsyncWebServerRequest *request){
request->send(200, FPSTR(CONTENT_TYPE_PLAIN), (String)ESP.getFreeHeap());
request->send(200, FPSTR(CONTENT_TYPE_PLAIN), (String)getFreeHeapSize());
});
#ifdef WLED_ENABLE_USERMOD_PAGE

View File

@@ -124,8 +124,8 @@ void sendDataWs(AsyncWebSocketClient * client)
DEBUG_PRINTF_P(PSTR("JSON buffer size: %u for WS request (%u).\n"), pDoc->memoryUsage(), len);
// the following may no longer be necessary as heap management has been fixed by @willmmiles in AWS
size_t heap1 = ESP.getFreeHeap();
DEBUG_PRINTF_P(PSTR("heap %u\n"), ESP.getFreeHeap());
size_t heap1 = getFreeHeapSize();
DEBUG_PRINTF_P(PSTR("heap %u\n"), getFreeHeapSize());
#ifdef ESP8266
if (len>heap1) {
DEBUG_PRINTLN(F("Out of memory (WS)!"));
@@ -134,8 +134,8 @@ void sendDataWs(AsyncWebSocketClient * client)
#endif
AsyncWebSocketBuffer buffer(len);
#ifdef ESP8266
size_t heap2 = ESP.getFreeHeap();
DEBUG_PRINTF_P(PSTR("heap %u\n"), ESP.getFreeHeap());
size_t heap2 = getFreeHeapSize();
DEBUG_PRINTF_P(PSTR("heap %u\n"), getFreeHeapSize());
#else
size_t heap2 = 0; // ESP32 variants do not have the same issue and will work without checking heap allocation
#endif