 dec45109d3
			
		
	
	dec45109d3
	
	
	
		
			
			* Refactor bus manager. * Fix for net debug * Fix 8266 compile * Move bus static members to proper cpp --------- Co-authored-by: cschwinne <dev.aircoookie@gmail.com>
		
			
				
	
	
		
			540 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			540 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Class implementation for addressing various light types
 | |
|  */
 | |
| 
 | |
| #include <Arduino.h>
 | |
| #include <IPAddress.h>
 | |
| #include "const.h"
 | |
| #include "pin_manager.h"
 | |
| #include "bus_wrapper.h"
 | |
| #include "bus_manager.h"
 | |
| 
 | |
| //colors.cpp
 | |
| uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
 | |
| uint16_t approximateKelvinFromRGB(uint32_t rgb);
 | |
| void colorRGBtoRGBW(byte* rgb);
 | |
| 
 | |
| //udp.cpp
 | |
| uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, byte *buffer, uint8_t bri=255, bool isRGBW=false);
 | |
| 
 | |
| // enable additional debug output
 | |
| #if defined(WLED_DEBUG_HOST)
 | |
|   #include "net_debug.h"
 | |
|   #define DEBUGOUT NetDebug
 | |
| #else
 | |
|   #define DEBUGOUT Serial
 | |
| #endif
 | |
| 
 | |
| #ifdef WLED_DEBUG
 | |
|   #ifndef ESP8266
 | |
|   #include <rom/rtc.h>
 | |
|   #endif
 | |
|   #define DEBUG_PRINT(x) DEBUGOUT.print(x)
 | |
|   #define DEBUG_PRINTLN(x) DEBUGOUT.println(x)
 | |
|   #define DEBUG_PRINTF(x...) DEBUGOUT.printf(x)
 | |
| #else
 | |
|   #define DEBUG_PRINT(x)
 | |
|   #define DEBUG_PRINTLN(x)
 | |
|   #define DEBUG_PRINTF(x...)
 | |
| #endif
 | |
| 
 | |
| //color mangling macros
 | |
| #define RGBW32(r,g,b,w) (uint32_t((byte(w) << 24) | (byte(r) << 16) | (byte(g) << 8) | (byte(b))))
 | |
| #define R(c) (byte((c) >> 16))
 | |
| #define G(c) (byte((c) >> 8))
 | |
| #define B(c) (byte(c))
 | |
| #define W(c) (byte((c) >> 24))
 | |
| 
 | |
| 
 | |
| void ColorOrderMap::add(uint16_t start, uint16_t len, uint8_t colorOrder) {
 | |
|   if (_count >= WLED_MAX_COLOR_ORDER_MAPPINGS) {
 | |
|     return;
 | |
|   }
 | |
|   if (len == 0) {
 | |
|     return;
 | |
|   }
 | |
|   if (colorOrder > COL_ORDER_MAX) {
 | |
|     return;
 | |
|   }
 | |
|   _mappings[_count].start = start;
 | |
|   _mappings[_count].len = len;
 | |
|   _mappings[_count].colorOrder = colorOrder;
 | |
|   _count++;
 | |
| }
 | |
| 
 | |
| uint8_t IRAM_ATTR ColorOrderMap::getPixelColorOrder(uint16_t pix, uint8_t defaultColorOrder) const {
 | |
|   if (_count == 0) return defaultColorOrder;
 | |
|   // upper nibble containd W swap information
 | |
|   uint8_t swapW = defaultColorOrder >> 4;
 | |
|   for (uint8_t i = 0; i < _count; i++) {
 | |
|     if (pix >= _mappings[i].start && pix < (_mappings[i].start + _mappings[i].len)) {
 | |
|       return _mappings[i].colorOrder | (swapW << 4);
 | |
|     }
 | |
|   }
 | |
|   return defaultColorOrder;
 | |
| }
 | |
| 
 | |
| 
 | |
| uint32_t Bus::autoWhiteCalc(uint32_t c) {
 | |
|   uint8_t aWM = _autoWhiteMode;
 | |
|   if (_gAWM < 255) aWM = _gAWM;
 | |
|   if (aWM == RGBW_MODE_MANUAL_ONLY) return c;
 | |
|   uint8_t w = W(c);
 | |
|   //ignore auto-white calculation if w>0 and mode DUAL (DUAL behaves as BRIGHTER if w==0)
 | |
|   if (w > 0 && aWM == RGBW_MODE_DUAL) return c;
 | |
|   uint8_t r = R(c);
 | |
|   uint8_t g = G(c);
 | |
|   uint8_t b = B(c);
 | |
|   w = r < g ? (r < b ? r : b) : (g < b ? g : b);
 | |
|   if (aWM == RGBW_MODE_AUTO_ACCURATE) { r -= w; g -= w; b -= w; } //subtract w in ACCURATE mode
 | |
|   return RGBW32(r, g, b, w);
 | |
| }
 | |
| 
 | |
| 
 | |
| BusDigital::BusDigital(BusConfig &bc, uint8_t nr, const ColorOrderMap &com) : Bus(bc.type, bc.start, bc.autoWhite), _colorOrderMap(com) {
 | |
|   if (!IS_DIGITAL(bc.type) || !bc.count) return;
 | |
|   if (!pinManager.allocatePin(bc.pins[0], true, PinOwner::BusDigital)) return;
 | |
|   _pins[0] = bc.pins[0];
 | |
|   if (IS_2PIN(bc.type)) {
 | |
|     if (!pinManager.allocatePin(bc.pins[1], true, PinOwner::BusDigital)) {
 | |
|     cleanup(); return;
 | |
|     }
 | |
|     _pins[1] = bc.pins[1];
 | |
|   }
 | |
|   reversed = bc.reversed;
 | |
|   _needsRefresh = bc.refreshReq || bc.type == TYPE_TM1814;
 | |
|   _skip = bc.skipAmount;    //sacrificial pixels
 | |
|   _len = bc.count + _skip;
 | |
|   _iType = PolyBus::getI(bc.type, _pins, nr);
 | |
|   if (_iType == I_NONE) return;
 | |
|   _busPtr = PolyBus::create(_iType, _pins, _len, nr);
 | |
|   _valid = (_busPtr != nullptr);
 | |
|   _colorOrder = bc.colorOrder;
 | |
|   DEBUG_PRINTF("%successfully inited strip %u (len %u) with type %u and pins %u,%u (itype %u)\n", _valid?"S":"Uns", nr, _len, bc.type, _pins[0],_pins[1],_iType);
 | |
| }
 | |
| 
 | |
| void BusDigital::show() {
 | |
|   PolyBus::show(_busPtr, _iType);
 | |
| }
 | |
| 
 | |
| bool BusDigital::canShow() {
 | |
|   return PolyBus::canShow(_busPtr, _iType);
 | |
| }
 | |
| 
 | |
| void BusDigital::setBrightness(uint8_t b) {
 | |
|   //Fix for turning off onboard LED breaking bus
 | |
|   #ifdef LED_BUILTIN
 | |
|   if (_bri == 0 && b > 0) {
 | |
|     if (_pins[0] == LED_BUILTIN || _pins[1] == LED_BUILTIN) PolyBus::begin(_busPtr, _iType, _pins);
 | |
|   }
 | |
|   #endif
 | |
|   Bus::setBrightness(b);
 | |
|   PolyBus::setBrightness(_busPtr, _iType, b);
 | |
| }
 | |
| 
 | |
| //If LEDs are skipped, it is possible to use the first as a status LED.
 | |
| //TODO only show if no new show due in the next 50ms
 | |
| void BusDigital::setStatusPixel(uint32_t c) {
 | |
|   if (_skip && canShow()) {
 | |
|     PolyBus::setPixelColor(_busPtr, _iType, 0, c, _colorOrderMap.getPixelColorOrder(_start, _colorOrder));
 | |
|     PolyBus::show(_busPtr, _iType);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void IRAM_ATTR BusDigital::setPixelColor(uint16_t pix, uint32_t c) {
 | |
|   if (_type == TYPE_SK6812_RGBW || _type == TYPE_TM1814) c = autoWhiteCalc(c);
 | |
|   if (_cct >= 1900) c = colorBalanceFromKelvin(_cct, c); //color correction from CCT
 | |
|   if (reversed) pix = _len - pix -1;
 | |
|   else pix += _skip;
 | |
|   PolyBus::setPixelColor(_busPtr, _iType, pix, c, _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder));
 | |
| }
 | |
| 
 | |
| uint32_t BusDigital::getPixelColor(uint16_t pix) {
 | |
|   if (reversed) pix = _len - pix -1;
 | |
|   else pix += _skip;
 | |
|   return PolyBus::getPixelColor(_busPtr, _iType, pix, _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder));
 | |
| }
 | |
| 
 | |
| uint8_t BusDigital::getPins(uint8_t* pinArray) {
 | |
|   uint8_t numPins = IS_2PIN(_type) ? 2 : 1;
 | |
|   for (uint8_t i = 0; i < numPins; i++) pinArray[i] = _pins[i];
 | |
|   return numPins;
 | |
| }
 | |
| 
 | |
| void BusDigital::setColorOrder(uint8_t colorOrder) {
 | |
|   // upper nibble contains W swap information
 | |
|   if ((colorOrder & 0x0F) > 5) return;
 | |
|   _colorOrder = colorOrder;
 | |
| }
 | |
| 
 | |
| void BusDigital::reinit() {
 | |
|   PolyBus::begin(_busPtr, _iType, _pins);
 | |
| }
 | |
| 
 | |
| void BusDigital::cleanup() {
 | |
|   DEBUG_PRINTLN(F("Digital Cleanup."));
 | |
|   PolyBus::cleanup(_busPtr, _iType);
 | |
|   _iType = I_NONE;
 | |
|   _valid = false;
 | |
|   _busPtr = nullptr;
 | |
|   pinManager.deallocatePin(_pins[1], PinOwner::BusDigital);
 | |
|   pinManager.deallocatePin(_pins[0], PinOwner::BusDigital);
 | |
| }
 | |
| 
 | |
| 
 | |
| BusPwm::BusPwm(BusConfig &bc) : Bus(bc.type, bc.start, bc.autoWhite) {
 | |
|   _valid = false;
 | |
|   if (!IS_PWM(bc.type)) return;
 | |
|   uint8_t numPins = NUM_PWM_PINS(bc.type);
 | |
| 
 | |
|   #ifdef ESP8266
 | |
|   analogWriteRange(255);  //same range as one RGB channel
 | |
|   analogWriteFreq(WLED_PWM_FREQ);
 | |
|   #else
 | |
|   _ledcStart = pinManager.allocateLedc(numPins);
 | |
|   if (_ledcStart == 255) { //no more free LEDC channels
 | |
|     deallocatePins(); return;
 | |
|   }
 | |
|   #endif
 | |
| 
 | |
|   for (uint8_t i = 0; i < numPins; i++) {
 | |
|     uint8_t currentPin = bc.pins[i];
 | |
|     if (!pinManager.allocatePin(currentPin, true, PinOwner::BusPwm)) {
 | |
|     deallocatePins(); return;
 | |
|     }
 | |
|     _pins[i] = currentPin; //store only after allocatePin() succeeds
 | |
|     #ifdef ESP8266
 | |
|     pinMode(_pins[i], OUTPUT);
 | |
|     #else
 | |
|     ledcSetup(_ledcStart + i, WLED_PWM_FREQ, 8);
 | |
|     ledcAttachPin(_pins[i], _ledcStart + i);
 | |
|     #endif
 | |
|   }
 | |
|   reversed = bc.reversed;
 | |
|   _valid = true;
 | |
| }
 | |
| 
 | |
| void BusPwm::setPixelColor(uint16_t pix, uint32_t c) {
 | |
|   if (pix != 0 || !_valid) return; //only react to first pixel
 | |
|   if (_type != TYPE_ANALOG_3CH) c = autoWhiteCalc(c);
 | |
|   if (_cct >= 1900 && (_type == TYPE_ANALOG_3CH || _type == TYPE_ANALOG_4CH)) {
 | |
|     c = colorBalanceFromKelvin(_cct, c); //color correction from CCT
 | |
|   }
 | |
|   uint8_t r = R(c);
 | |
|   uint8_t g = G(c);
 | |
|   uint8_t b = B(c);
 | |
|   uint8_t w = W(c);
 | |
|   uint8_t cct = 0; //0 - full warm white, 255 - full cold white
 | |
|   if (_cct > -1) {
 | |
|     if (_cct >= 1900)    cct = (_cct - 1900) >> 5;
 | |
|     else if (_cct < 256) cct = _cct;
 | |
|   } else {
 | |
|     cct = (approximateKelvinFromRGB(c) - 1900) >> 5;
 | |
|   }
 | |
| 
 | |
|   uint8_t ww, cw;
 | |
|   #ifdef WLED_USE_IC_CCT
 | |
|   ww = w;
 | |
|   cw = cct;
 | |
|   #else
 | |
|   //0 - linear (CCT 127 = 50% warm, 50% cold), 127 - additive CCT blending (CCT 127 = 100% warm, 100% cold)
 | |
|   if (cct       < _cctBlend) ww = 255;
 | |
|   else ww = ((255-cct) * 255) / (255 - _cctBlend);
 | |
| 
 | |
|   if ((255-cct) < _cctBlend) cw = 255;
 | |
|   else                       cw = (cct * 255) / (255 - _cctBlend);
 | |
| 
 | |
|   ww = (w * ww) / 255; //brightness scaling
 | |
|   cw = (w * cw) / 255;
 | |
|   #endif
 | |
| 
 | |
|   switch (_type) {
 | |
|     case TYPE_ANALOG_1CH: //one channel (white), relies on auto white calculation
 | |
|       _data[0] = w;
 | |
|       break;
 | |
|     case TYPE_ANALOG_2CH: //warm white + cold white
 | |
|       _data[1] = cw;
 | |
|       _data[0] = ww;
 | |
|       break;
 | |
|     case TYPE_ANALOG_5CH: //RGB + warm white + cold white
 | |
|       _data[4] = cw;
 | |
|       w = ww;
 | |
|     case TYPE_ANALOG_4CH: //RGBW
 | |
|       _data[3] = w;
 | |
|     case TYPE_ANALOG_3CH: //standard dumb RGB
 | |
|       _data[0] = r; _data[1] = g; _data[2] = b;
 | |
|       break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //does no index check
 | |
| uint32_t BusPwm::getPixelColor(uint16_t pix) {
 | |
|   if (!_valid) return 0;
 | |
|   return RGBW32(_data[0], _data[1], _data[2], _data[3]);
 | |
| }
 | |
| 
 | |
| void BusPwm::show() {
 | |
|   if (!_valid) return;
 | |
|   uint8_t numPins = NUM_PWM_PINS(_type);
 | |
|   for (uint8_t i = 0; i < numPins; i++) {
 | |
|     uint8_t scaled = (_data[i] * _bri) / 255;
 | |
|     if (reversed) scaled = 255 - scaled;
 | |
|     #ifdef ESP8266
 | |
|     analogWrite(_pins[i], scaled);
 | |
|     #else
 | |
|     ledcWrite(_ledcStart + i, scaled);
 | |
|     #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| uint8_t BusPwm::getPins(uint8_t* pinArray) {
 | |
|   if (!_valid) return 0;
 | |
|   uint8_t numPins = NUM_PWM_PINS(_type);
 | |
|   for (uint8_t i = 0; i < numPins; i++) {
 | |
|     pinArray[i] = _pins[i];
 | |
|   }
 | |
|   return numPins;
 | |
| }
 | |
| 
 | |
| void BusPwm::deallocatePins() {
 | |
|   uint8_t numPins = NUM_PWM_PINS(_type);
 | |
|   for (uint8_t i = 0; i < numPins; i++) {
 | |
|     pinManager.deallocatePin(_pins[i], PinOwner::BusPwm);
 | |
|     if (!pinManager.isPinOk(_pins[i])) continue;
 | |
|     #ifdef ESP8266
 | |
|     digitalWrite(_pins[i], LOW); //turn off PWM interrupt
 | |
|     #else
 | |
|     if (_ledcStart < 16) ledcDetachPin(_pins[i]);
 | |
|     #endif
 | |
|   }
 | |
|   #ifdef ARDUINO_ARCH_ESP32
 | |
|   pinManager.deallocateLedc(_ledcStart, numPins);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| BusOnOff::BusOnOff(BusConfig &bc) : Bus(bc.type, bc.start, bc.autoWhite) {
 | |
|   _valid = false;
 | |
|   if (bc.type != TYPE_ONOFF) return;
 | |
| 
 | |
|   uint8_t currentPin = bc.pins[0];
 | |
|   if (!pinManager.allocatePin(currentPin, true, PinOwner::BusOnOff)) {
 | |
|     return;
 | |
|   }
 | |
|   _pin = currentPin; //store only after allocatePin() succeeds
 | |
|   pinMode(_pin, OUTPUT);
 | |
|   reversed = bc.reversed;
 | |
|   _valid = true;
 | |
| }
 | |
| 
 | |
| void BusOnOff::setPixelColor(uint16_t pix, uint32_t c) {
 | |
|   if (pix != 0 || !_valid) return; //only react to first pixel
 | |
|   c = autoWhiteCalc(c);
 | |
|   uint8_t r = R(c);
 | |
|   uint8_t g = G(c);
 | |
|   uint8_t b = B(c);
 | |
|   uint8_t w = W(c);
 | |
| 
 | |
|   _data = bool((r+g+b+w) && _bri) ? 0xFF : 0;
 | |
| }
 | |
| 
 | |
| uint32_t BusOnOff::getPixelColor(uint16_t pix) {
 | |
|   if (!_valid) return 0;
 | |
|   return RGBW32(_data, _data, _data, _data);
 | |
| }
 | |
| 
 | |
| void BusOnOff::show() {
 | |
|   if (!_valid) return;
 | |
|   digitalWrite(_pin, reversed ? !(bool)_data : (bool)_data);
 | |
| }
 | |
| 
 | |
| uint8_t BusOnOff::getPins(uint8_t* pinArray) {
 | |
|   if (!_valid) return 0;
 | |
|   pinArray[0] = _pin;
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| BusNetwork::BusNetwork(BusConfig &bc) : Bus(bc.type, bc.start, bc.autoWhite) {
 | |
|   _valid = false;
 | |
| //      switch (bc.type) {
 | |
| //        case TYPE_NET_ARTNET_RGB:
 | |
| //          _rgbw = false;
 | |
| //          _UDPtype = 2;
 | |
| //          break;
 | |
| //        case TYPE_NET_E131_RGB:
 | |
| //          _rgbw = false;
 | |
| //          _UDPtype = 1;
 | |
| //          break;
 | |
| //        case TYPE_NET_DDP_RGB:
 | |
| //          _rgbw = false;
 | |
| //          _UDPtype = 0;
 | |
| //          break;
 | |
| //        default: // TYPE_NET_DDP_RGB / TYPE_NET_DDP_RGBW
 | |
|       _rgbw = bc.type == TYPE_NET_DDP_RGBW;
 | |
|       _UDPtype = 0;
 | |
| //          break;
 | |
| //      }
 | |
|   _UDPchannels = _rgbw ? 4 : 3;
 | |
|   _data = (byte *)malloc(bc.count * _UDPchannels);
 | |
|   if (_data == nullptr) return;
 | |
|   memset(_data, 0, bc.count * _UDPchannels);
 | |
|   _len = bc.count;
 | |
|   _client = IPAddress(bc.pins[0],bc.pins[1],bc.pins[2],bc.pins[3]);
 | |
|   _broadcastLock = false;
 | |
|   _valid = true;
 | |
| }
 | |
| 
 | |
| void BusNetwork::setPixelColor(uint16_t pix, uint32_t c) {
 | |
|   if (!_valid || pix >= _len) return;
 | |
|   if (isRgbw()) c = autoWhiteCalc(c);
 | |
|   if (_cct >= 1900) c = colorBalanceFromKelvin(_cct, c); //color correction from CCT
 | |
|   uint16_t offset = pix * _UDPchannels;
 | |
|   _data[offset]   = R(c);
 | |
|   _data[offset+1] = G(c);
 | |
|   _data[offset+2] = B(c);
 | |
|   if (_rgbw) _data[offset+3] = W(c);
 | |
| }
 | |
| 
 | |
| uint32_t BusNetwork::getPixelColor(uint16_t pix) {
 | |
|   if (!_valid || pix >= _len) return 0;
 | |
|   uint16_t offset = pix * _UDPchannels;
 | |
|   return RGBW32(_data[offset], _data[offset+1], _data[offset+2], _rgbw ? (_data[offset+3] << 24) : 0);
 | |
| }
 | |
| 
 | |
| void BusNetwork::show() {
 | |
|   if (!_valid || !canShow()) return;
 | |
|   _broadcastLock = true;
 | |
|   realtimeBroadcast(_UDPtype, _client, _len, _data, _bri, _rgbw);
 | |
|   _broadcastLock = false;
 | |
| }
 | |
| 
 | |
| uint8_t BusNetwork::getPins(uint8_t* pinArray) {
 | |
|   for (uint8_t i = 0; i < 4; i++) {
 | |
|     pinArray[i] = _client[i];
 | |
|   }
 | |
|   return 4;
 | |
| }
 | |
| 
 | |
| void BusNetwork::cleanup() {
 | |
|   _type = I_NONE;
 | |
|   _valid = false;
 | |
|   if (_data != nullptr) free(_data);
 | |
|   _data = nullptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| //utility to get the approx. memory usage of a given BusConfig
 | |
| uint32_t BusManager::memUsage(BusConfig &bc) {
 | |
|   uint8_t type = bc.type;
 | |
|   uint16_t len = bc.count + bc.skipAmount;
 | |
|   if (type > 15 && type < 32) {
 | |
|     #ifdef ESP8266
 | |
|       if (bc.pins[0] == 3) { //8266 DMA uses 5x the mem
 | |
|         if (type > 29) return len*20; //RGBW
 | |
|         return len*15;
 | |
|       }
 | |
|       if (type > 29) return len*4; //RGBW
 | |
|       return len*3;
 | |
|     #else //ESP32 RMT uses double buffer?
 | |
|       if (type > 29) return len*8; //RGBW
 | |
|       return len*6;
 | |
|     #endif
 | |
|   }
 | |
|   if (type > 31 && type < 48)   return 5;
 | |
|   if (type == 44 || type == 45) return len*4; //RGBW
 | |
|   return len*3; //RGB
 | |
| }
 | |
| 
 | |
| int BusManager::add(BusConfig &bc) {
 | |
|   if (getNumBusses() - getNumVirtualBusses() >= WLED_MAX_BUSSES) return -1;
 | |
|   if (bc.type >= TYPE_NET_DDP_RGB && bc.type < 96) {
 | |
|     busses[numBusses] = new BusNetwork(bc);
 | |
|   } else if (IS_DIGITAL(bc.type)) {
 | |
|     busses[numBusses] = new BusDigital(bc, numBusses, colorOrderMap);
 | |
|   } else if (bc.type == TYPE_ONOFF) {
 | |
|     busses[numBusses] = new BusOnOff(bc);
 | |
|   } else {
 | |
|     busses[numBusses] = new BusPwm(bc);
 | |
|   }
 | |
|   return numBusses++;
 | |
| }
 | |
| 
 | |
| //do not call this method from system context (network callback)
 | |
| void BusManager::removeAll() {
 | |
|   DEBUG_PRINTLN(F("Removing all."));
 | |
|   //prevents crashes due to deleting busses while in use.
 | |
|   while (!canAllShow()) yield();
 | |
|   for (uint8_t i = 0; i < numBusses; i++) delete busses[i];
 | |
|   numBusses = 0;
 | |
| }
 | |
| 
 | |
| void BusManager::show() {
 | |
|   for (uint8_t i = 0; i < numBusses; i++) {
 | |
|     busses[i]->show();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BusManager::setStatusPixel(uint32_t c) {
 | |
|   for (uint8_t i = 0; i < numBusses; i++) {
 | |
|     busses[i]->setStatusPixel(c);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void IRAM_ATTR BusManager::setPixelColor(uint16_t pix, uint32_t c, int16_t cct) {
 | |
|   for (uint8_t i = 0; i < numBusses; i++) {
 | |
|     Bus* b = busses[i];
 | |
|     uint16_t bstart = b->getStart();
 | |
|     if (pix < bstart || pix >= bstart + b->getLength()) continue;
 | |
|     busses[i]->setPixelColor(pix - bstart, c);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BusManager::setBrightness(uint8_t b) {
 | |
|   for (uint8_t i = 0; i < numBusses; i++) {
 | |
|     busses[i]->setBrightness(b);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BusManager::setSegmentCCT(int16_t cct, bool allowWBCorrection) {
 | |
|   if (cct > 255) cct = 255;
 | |
|   if (cct >= 0) {
 | |
|     //if white balance correction allowed, save as kelvin value instead of 0-255
 | |
|     if (allowWBCorrection) cct = 1900 + (cct << 5);
 | |
|   } else cct = -1;
 | |
|   Bus::setCCT(cct);
 | |
| }
 | |
| 
 | |
| uint32_t BusManager::getPixelColor(uint16_t pix) {
 | |
|   for (uint8_t i = 0; i < numBusses; i++) {
 | |
|     Bus* b = busses[i];
 | |
|     uint16_t bstart = b->getStart();
 | |
|     if (pix < bstart || pix >= bstart + b->getLength()) continue;
 | |
|     return b->getPixelColor(pix - bstart);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool BusManager::canAllShow() {
 | |
|   for (uint8_t i = 0; i < numBusses; i++) {
 | |
|     if (!busses[i]->canShow()) return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Bus* BusManager::getBus(uint8_t busNr) {
 | |
|   if (busNr >= numBusses) return nullptr;
 | |
|   return busses[busNr];
 | |
| }
 | |
| 
 | |
| //semi-duplicate of strip.getLengthTotal() (though that just returns strip._length, calculated in finalizeInit())
 | |
| uint16_t BusManager::getTotalLength() {
 | |
|   uint16_t len = 0;
 | |
|   for (uint8_t i=0; i<numBusses; i++) len += busses[i]->getLength();
 | |
|   return len;
 | |
| }
 | |
| 
 | |
| // Bus static member definition
 | |
| int16_t Bus::_cct = -1;
 | |
| uint8_t Bus::_cctBlend = 0;
 | |
| uint8_t Bus::_gAWM = 255; |