Files
WLED/wled00/colors.cpp
coderabbitai[bot] 6ca83b7647 📝 Add docstrings to more_customPalettes
Docstrings generation was requested by @DedeHai.

* https://github.com/wled/WLED/pull/4932#issuecomment-3289882539

The following files were modified:

* `tools/cdata.js`
* `wled00/FX_fcn.cpp`
* `wled00/colors.cpp`
* `wled00/colors.h`
* `wled00/data/index.js`
* `wled00/json.cpp`
* `wled00/util.cpp`
* `wled00/wled_server.cpp`
2025-09-14 20:46:52 +00:00

637 lines
24 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "wled.h"
/*
* Color conversion & utility methods
*/
/*
* color blend function, based on FastLED blend function
* the calculation for each color is: result = (A*(amountOfA) + A + B*(amountOfB) + B) / 256 with amountOfA = 255 - amountOfB
*/
uint32_t IRAM_ATTR color_blend(uint32_t color1, uint32_t color2, uint8_t blend) {
// min / max blend checking is omitted: calls with 0 or 255 are rare, checking lowers overall performance
const uint32_t TWO_CHANNEL_MASK = 0x00FF00FF; // mask for R and B channels or W and G if negated (poorman's SIMD; https://github.com/wled/WLED/pull/4568#discussion_r1986587221)
uint32_t rb1 = color1 & TWO_CHANNEL_MASK; // extract R & B channels from color1
uint32_t wg1 = (color1 >> 8) & TWO_CHANNEL_MASK; // extract W & G channels from color1 (shifted for multiplication later)
uint32_t rb2 = color2 & TWO_CHANNEL_MASK; // extract R & B channels from color2
uint32_t wg2 = (color2 >> 8) & TWO_CHANNEL_MASK; // extract W & G channels from color2 (shifted for multiplication later)
uint32_t rb3 = ((((rb1 << 8) | rb2) + (rb2 * blend) - (rb1 * blend)) >> 8) & TWO_CHANNEL_MASK; // blend red and blue
uint32_t wg3 = ((((wg1 << 8) | wg2) + (wg2 * blend) - (wg1 * blend))) & ~TWO_CHANNEL_MASK; // negated mask for white and green
return rb3 | wg3;
}
/*
* color add function that preserves ratio
* original idea: https://github.com/wled-dev/WLED/pull/2465 by https://github.com/Proto-molecule
* speed optimisations by @dedehai
*/
uint32_t color_add(uint32_t c1, uint32_t c2, bool preserveCR)
{
if (c1 == BLACK) return c2;
if (c2 == BLACK) return c1;
const uint32_t TWO_CHANNEL_MASK = 0x00FF00FF; // mask for R and B channels or W and G if negated
uint32_t rb = ( c1 & TWO_CHANNEL_MASK) + ( c2 & TWO_CHANNEL_MASK); // mask and add two colors at once
uint32_t wg = ((c1>>8) & TWO_CHANNEL_MASK) + ((c2>>8) & TWO_CHANNEL_MASK);
uint32_t r = rb >> 16; // extract single color values
uint32_t b = rb & 0xFFFF;
uint32_t w = wg >> 16;
uint32_t g = wg & 0xFFFF;
if (preserveCR) { // preserve color ratios
uint32_t max = std::max(r,g); // check for overflow note
max = std::max(max,b);
max = std::max(max,w);
//unsigned max = r; // check for overflow note
//max = g > max ? g : max;
//max = b > max ? b : max;
//max = w > max ? w : max;
if (max > 255) {
const uint32_t scale = (uint32_t(255)<<8) / max; // division of two 8bit (shifted) values does not work -> use bit shifts and multiplaction instead
rb = ((rb * scale) >> 8) & TWO_CHANNEL_MASK;
wg = (wg * scale) & ~TWO_CHANNEL_MASK;
} else wg <<= 8; //shift white and green back to correct position
return rb | wg;
} else {
r = r > 255 ? 255 : r;
g = g > 255 ? 255 : g;
b = b > 255 ? 255 : b;
w = w > 255 ? 255 : w;
return RGBW32(r,g,b,w);
}
}
/*
* fades color toward black
* if using "video" method the resulting color will never become black unless it is already black
*/
uint32_t IRAM_ATTR color_fade(uint32_t c1, uint8_t amount, bool video) {
if (c1 == 0 || amount == 0) return 0; // black or no change
if (amount == 255) return c1;
uint32_t addRemains = 0;
if (!video) amount++; // add one for correct scaling using bitshifts
else {
// video scaling: make sure colors do not dim to zero if they started non-zero unless they distort the hue
uint8_t r = byte(c1>>16), g = byte(c1>>8), b = byte(c1), w = byte(c1>>24); // extract r, g, b, w channels
uint8_t maxc = (r > g) ? ((r > b) ? r : b) : ((g > b) ? g : b); // determine dominant channel for hue preservation
uint8_t quarterMax = maxc >> 2; // note: using half of max results in color artefacts
addRemains = r && r > quarterMax ? 0x00010000 : 0;
addRemains |= g && g > quarterMax ? 0x00000100 : 0;
addRemains |= b && b > quarterMax ? 0x00000001 : 0;
addRemains |= w ? 0x01000000 : 0;
}
const uint32_t TWO_CHANNEL_MASK = 0x00FF00FF;
uint32_t rb = (((c1 & TWO_CHANNEL_MASK) * amount) >> 8) & TWO_CHANNEL_MASK; // scale red and blue
uint32_t wg = (((c1 >> 8) & TWO_CHANNEL_MASK) * amount) & ~TWO_CHANNEL_MASK; // scale white and green
return (rb | wg) + addRemains;
}
/*
* color adjustment in HSV color space (converts RGB to HSV and back), color conversions are not 100% accurate!
shifts hue, increase brightness, decreases saturation (if not black)
note: inputs are 32bit to speed up the function, useful input value ranges are 0-255
*/
uint32_t adjust_color(uint32_t rgb, uint32_t hueShift, uint32_t lighten, uint32_t brighten) {
if (rgb == 0 | hueShift + lighten + brighten == 0) return rgb; // black or no change
CHSV32 hsv;
rgb2hsv(rgb, hsv); //convert to HSV
hsv.h += (hueShift << 8); // shift hue (hue is 16 bits)
hsv.s = max((int32_t)0, (int32_t)hsv.s - (int32_t)lighten); // desaturate
hsv.v = min((uint32_t)255, (uint32_t)hsv.v + brighten); // increase brightness
uint32_t rgb_adjusted;
hsv2rgb(hsv, rgb_adjusted); // convert back to RGB TODO: make this into 16 bit conversion
return rgb_adjusted;
}
// 1:1 replacement of fastled function optimized for ESP, slightly faster, more accurate and uses less flash (~ -200bytes)
uint32_t ColorFromPaletteWLED(const CRGBPalette16& pal, unsigned index, uint8_t brightness, TBlendType blendType) {
if (blendType == LINEARBLEND_NOWRAP) {
index = (index * 0xF0) >> 8; // Blend range is affected by lo4 blend of values, remap to avoid wrapping
}
unsigned hi4 = byte(index) >> 4;
unsigned lo4 = (index & 0x0F);
const CRGB* entry = (CRGB*)&(pal[0]) + hi4;
unsigned red1 = entry->r;
unsigned green1 = entry->g;
unsigned blue1 = entry->b;
if (lo4 && blendType != NOBLEND) {
if (hi4 == 15) entry = &(pal[0]);
else ++entry;
unsigned f2 = (lo4 << 4);
unsigned f1 = 256 - f2;
red1 = (red1 * f1 + (unsigned)entry->r * f2) >> 8; // note: using color_blend() is slower
green1 = (green1 * f1 + (unsigned)entry->g * f2) >> 8;
blue1 = (blue1 * f1 + (unsigned)entry->b * f2) >> 8;
}
if (brightness < 255) { // note: zero checking could be done to return black but that is hardly ever used so it is omitted
// actually same as color_fade(), using color_fade() is slower
uint32_t scale = brightness + 1; // adjust for rounding (bitshift)
red1 = (red1 * scale) >> 8;
green1 = (green1 * scale) >> 8;
blue1 = (blue1 * scale) >> 8;
}
return RGBW32(red1,green1,blue1,0);
}
void setRandomColor(byte* rgb)
{
lastRandomIndex = get_random_wheel_index(lastRandomIndex);
colorHStoRGB(lastRandomIndex*256,255,rgb);
}
/*
* generates a random palette based on harmonic color theory
* takes a base palette as the input, it will choose one color of the base palette and keep it
*/
CRGBPalette16 generateHarmonicRandomPalette(const CRGBPalette16 &basepalette)
{
CHSV palettecolors[4]; // array of colors for the new palette
uint8_t keepcolorposition = hw_random8(4); // color position of current random palette to keep
palettecolors[keepcolorposition] = rgb2hsv(basepalette.entries[keepcolorposition*5]); // read one of the base colors of the current palette
palettecolors[keepcolorposition].hue += hw_random8(10)-5; // +/- 5 randomness of base color
// generate 4 saturation and brightness value numbers
// only one saturation is allowed to be below 200 creating mostly vibrant colors
// only one brightness value number is allowed below 200, creating mostly bright palettes
for (int i = 0; i < 3; i++) { // generate three high values
palettecolors[i].saturation = hw_random8(200,255);
palettecolors[i].value = hw_random8(220,255);
}
// allow one to be lower
palettecolors[3].saturation = hw_random8(20,255);
palettecolors[3].value = hw_random8(80,255);
// shuffle the arrays
for (int i = 3; i > 0; i--) {
std::swap(palettecolors[i].saturation, palettecolors[hw_random8(i + 1)].saturation);
std::swap(palettecolors[i].value, palettecolors[hw_random8(i + 1)].value);
}
// now generate three new hues based off of the hue of the chosen current color
uint8_t basehue = palettecolors[keepcolorposition].hue;
uint8_t harmonics[3]; // hues that are harmonic but still a little random
uint8_t type = hw_random8(5); // choose a harmony type
switch (type) {
case 0: // analogous
harmonics[0] = basehue + hw_random8(30, 50);
harmonics[1] = basehue + hw_random8(10, 30);
harmonics[2] = basehue - hw_random8(10, 30);
break;
case 1: // triadic
harmonics[0] = basehue + 113 + hw_random8(15);
harmonics[1] = basehue + 233 + hw_random8(15);
harmonics[2] = basehue - 7 + hw_random8(15);
break;
case 2: // split-complementary
harmonics[0] = basehue + 145 + hw_random8(10);
harmonics[1] = basehue + 205 + hw_random8(10);
harmonics[2] = basehue - 5 + hw_random8(10);
break;
case 3: // square
harmonics[0] = basehue + 85 + hw_random8(10);
harmonics[1] = basehue + 175 + hw_random8(10);
harmonics[2] = basehue + 265 + hw_random8(10);
break;
case 4: // tetradic
harmonics[0] = basehue + 80 + hw_random8(20);
harmonics[1] = basehue + 170 + hw_random8(20);
harmonics[2] = basehue - 15 + hw_random8(30);
break;
}
if (hw_random8() < 128) {
// 50:50 chance of shuffling hues or keep the color order
for (int i = 2; i > 0; i--) {
std::swap(harmonics[i], harmonics[hw_random8(i + 1)]);
}
}
// now set the hues
int j = 0;
for (int i = 0; i < 4; i++) {
if (i==keepcolorposition) continue; // skip the base color
palettecolors[i].hue = harmonics[j];
j++;
}
bool makepastelpalette = false;
if (hw_random8() < 25) { // ~10% chance of desaturated 'pastel' colors
makepastelpalette = true;
}
// apply saturation
CRGB RGBpalettecolors[4];
for (int i = 0; i < 4; i++) {
if (makepastelpalette && palettecolors[i].saturation > 180) {
palettecolors[i].saturation -= 160; //desaturate all four colors
}
RGBpalettecolors[i] = (CRGB)palettecolors[i]; //convert to RGB
RGBpalettecolors[i] = ((uint32_t)RGBpalettecolors[i]) & 0x00FFFFFFU; //strip alpha from CRGB
}
return CRGBPalette16(RGBpalettecolors[0],
RGBpalettecolors[1],
RGBpalettecolors[2],
RGBpalettecolors[3]);
}
CRGBPalette16 generateRandomPalette() // generate fully random palette
{
return CRGBPalette16(CHSV(hw_random8(), hw_random8(160, 255), hw_random8(128, 255)),
CHSV(hw_random8(), hw_random8(160, 255), hw_random8(128, 255)),
CHSV(hw_random8(), hw_random8(160, 255), hw_random8(128, 255)),
CHSV(hw_random8(), hw_random8(160, 255), hw_random8(128, 255)));
}
/**
* @brief Loads user-defined color palettes from filesystem into runtime storage.
*
* Scans for files named "/palette0.json", "/palette1.json", ... up to
* WLED_MAX_CUSTOM_PALETTES and builds dynamic gradient palettes from any valid
* JSON found. Existing in-memory custom palettes are cleared before loading.
*
* Supported JSON formats for the "palette" array:
* - Pairs of [index, hexString] (e.g. [0, "FF0000", 128, "00FF00", ...]) where
* each pair is an index (0255) followed by an RRGGBB or RRGGBBWW hex color.
* - Quads of [index, R, G, B] (e.g. [0, 255, 0, 0, 128, 0, 255, 0, ...]) where
* each group of four values is an index (0255) followed by red/green/blue bytes.
*
* For each palette file the function converts the supplied entries into a
* temporary gradient table (supporting up to 18 color stops) and appends the
* resulting CRGBPalette16 to customPalettes. The loader stops at the first
* missing palette file.
*/
void loadCustomPalettes() {
byte tcp[72]; //support gradient palettes with up to 18 entries
CRGBPalette16 targetPalette;
customPalettes.clear(); // start fresh
for (int index = 0; index < WLED_MAX_CUSTOM_PALETTES; index++) {
char fileName[32];
sprintf_P(fileName, PSTR("/palette%d.json"), index);
StaticJsonDocument<1536> pDoc; // barely enough to fit 72 numbers
if (WLED_FS.exists(fileName)) {
DEBUGFX_PRINTF_P(PSTR("Reading palette from %s\n"), fileName);
if (readObjectFromFile(fileName, nullptr, &pDoc)) {
JsonArray pal = pDoc[F("palette")];
if (!pal.isNull() && pal.size()>3) { // not an empty palette (at least 2 entries)
memset(tcp, 255, sizeof(tcp));
if (pal[0].is<int>() && pal[1].is<const char *>()) {
// we have an array of index & hex strings
size_t palSize = MIN(pal.size(), 36);
palSize -= palSize % 2; // make sure size is multiple of 2
for (size_t i=0, j=0; i<palSize && pal[i].as<int>()<256; i+=2) {
uint8_t rgbw[] = {0,0,0,0};
if (colorFromHexString(rgbw, pal[i+1].as<const char *>())) { // will catch non-string entires
tcp[ j ] = (uint8_t) pal[ i ].as<int>(); // index
for (size_t c=0; c<3; c++) tcp[j+1+c] = rgbw[c]; // only use RGB component
DEBUGFX_PRINTF_P(PSTR("%2u -> %3d [%3d,%3d,%3d]\n"), i, int(tcp[j]), int(tcp[j+1]), int(tcp[j+2]), int(tcp[j+3]));
j += 4;
}
}
} else {
size_t palSize = MIN(pal.size(), 72);
palSize -= palSize % 4; // make sure size is multiple of 4
for (size_t i=0; i<palSize && pal[i].as<int>()<256; i+=4) {
tcp[ i ] = (uint8_t) pal[ i ].as<int>(); // index
for (size_t c=0; c<3; c++) tcp[i+1+c] = (uint8_t) pal[i+1+c].as<int>();
DEBUGFX_PRINTF_P(PSTR("%2u -> %3d [%3d,%3d,%3d]\n"), i, int(tcp[i]), int(tcp[i+1]), int(tcp[i+2]), int(tcp[i+3]));
}
}
customPalettes.push_back(targetPalette.loadDynamicGradientPalette(tcp));
} else {
DEBUGFX_PRINTLN(F("Wrong palette format."));
}
}
} else {
break;
}
}
}
void hsv2rgb(const CHSV32& hsv, uint32_t& rgb) // convert HSV (16bit hue) to RGB (32bit with white = 0)
{
unsigned int remainder, region, p, q, t;
unsigned int h = hsv.h;
unsigned int s = hsv.s;
unsigned int v = hsv.v;
if (s == 0) {
rgb = v << 16 | v << 8 | v;
return;
}
region = h / 10923; // 65536 / 6 = 10923
remainder = (h - (region * 10923)) * 6;
p = (v * (255 - s)) >> 8;
q = (v * (255 - ((s * remainder) >> 16))) >> 8;
t = (v * (255 - ((s * (65535 - remainder)) >> 16))) >> 8;
switch (region) {
case 0:
rgb = v << 16 | t << 8 | p; break;
case 1:
rgb = q << 16 | v << 8 | p; break;
case 2:
rgb = p << 16 | v << 8 | t; break;
case 3:
rgb = p << 16 | q << 8 | v; break;
case 4:
rgb = t << 16 | p << 8 | v; break;
default:
rgb = v << 16 | p << 8 | q; break;
}
}
void rgb2hsv(const uint32_t rgb, CHSV32& hsv) // convert RGB to HSV (16bit hue), much more accurate and faster than fastled version
{
hsv.raw = 0;
int32_t r = (rgb>>16)&0xFF;
int32_t g = (rgb>>8)&0xFF;
int32_t b = rgb&0xFF;
int32_t minval, maxval, delta;
minval = min(r, g);
minval = min(minval, b);
maxval = max(r, g);
maxval = max(maxval, b);
if (maxval == 0) return; // black
hsv.v = maxval;
delta = maxval - minval;
hsv.s = (255 * delta) / maxval;
if (hsv.s == 0) return; // gray value
if (maxval == r) hsv.h = (10923 * (g - b)) / delta;
else if (maxval == g) hsv.h = 21845 + (10923 * (b - r)) / delta;
else hsv.h = 43690 + (10923 * (r - g)) / delta;
}
void colorHStoRGB(uint16_t hue, byte sat, byte* rgb) { //hue, sat to rgb
uint32_t crgb;
hsv2rgb(CHSV32(hue, sat, 255), crgb);
rgb[0] = byte((crgb) >> 16);
rgb[1] = byte((crgb) >> 8);
rgb[2] = byte(crgb);
}
//get RGB values from color temperature in K (https://tannerhelland.com/2012/09/18/convert-temperature-rgb-algorithm-code.html)
void colorKtoRGB(uint16_t kelvin, byte* rgb) //white spectrum to rgb, calc
{
int r = 0, g = 0, b = 0;
float temp = kelvin / 100.0f;
if (temp <= 66.0f) {
r = 255;
g = roundf(99.4708025861f * logf(temp) - 161.1195681661f);
if (temp <= 19.0f) {
b = 0;
} else {
b = roundf(138.5177312231f * logf((temp - 10.0f)) - 305.0447927307f);
}
} else {
r = roundf(329.698727446f * powf((temp - 60.0f), -0.1332047592f));
g = roundf(288.1221695283f * powf((temp - 60.0f), -0.0755148492f));
b = 255;
}
//g += 12; //mod by Aircoookie, a bit less accurate but visibly less pinkish
rgb[0] = (uint8_t) constrain(r, 0, 255);
rgb[1] = (uint8_t) constrain(g, 0, 255);
rgb[2] = (uint8_t) constrain(b, 0, 255);
rgb[3] = 0;
}
void colorCTtoRGB(uint16_t mired, byte* rgb) //white spectrum to rgb, bins
{
//this is only an approximation using WS2812B with gamma correction enabled
if (mired > 475) {
rgb[0]=255;rgb[1]=199;rgb[2]=92;//500
} else if (mired > 425) {
rgb[0]=255;rgb[1]=213;rgb[2]=118;//450
} else if (mired > 375) {
rgb[0]=255;rgb[1]=216;rgb[2]=118;//400
} else if (mired > 325) {
rgb[0]=255;rgb[1]=234;rgb[2]=140;//350
} else if (mired > 275) {
rgb[0]=255;rgb[1]=243;rgb[2]=160;//300
} else if (mired > 225) {
rgb[0]=250;rgb[1]=255;rgb[2]=188;//250
} else if (mired > 175) {
rgb[0]=247;rgb[1]=255;rgb[2]=215;//200
} else {
rgb[0]=237;rgb[1]=255;rgb[2]=239;//150
}
}
#ifndef WLED_DISABLE_HUESYNC
void colorXYtoRGB(float x, float y, byte* rgb) //coordinates to rgb (https://www.developers.meethue.com/documentation/color-conversions-rgb-xy)
{
float z = 1.0f - x - y;
float X = (1.0f / y) * x;
float Z = (1.0f / y) * z;
float r = (int)255*(X * 1.656492f - 0.354851f - Z * 0.255038f);
float g = (int)255*(-X * 0.707196f + 1.655397f + Z * 0.036152f);
float b = (int)255*(X * 0.051713f - 0.121364f + Z * 1.011530f);
if (r > b && r > g && r > 1.0f) {
// red is too big
g = g / r;
b = b / r;
r = 1.0f;
} else if (g > b && g > r && g > 1.0f) {
// green is too big
r = r / g;
b = b / g;
g = 1.0f;
} else if (b > r && b > g && b > 1.0f) {
// blue is too big
r = r / b;
g = g / b;
b = 1.0f;
}
// Apply gamma correction
r = r <= 0.0031308f ? 12.92f * r : (1.0f + 0.055f) * powf(r, (1.0f / 2.4f)) - 0.055f;
g = g <= 0.0031308f ? 12.92f * g : (1.0f + 0.055f) * powf(g, (1.0f / 2.4f)) - 0.055f;
b = b <= 0.0031308f ? 12.92f * b : (1.0f + 0.055f) * powf(b, (1.0f / 2.4f)) - 0.055f;
if (r > b && r > g) {
// red is biggest
if (r > 1.0f) {
g = g / r;
b = b / r;
r = 1.0f;
}
} else if (g > b && g > r) {
// green is biggest
if (g > 1.0f) {
r = r / g;
b = b / g;
g = 1.0f;
}
} else if (b > r && b > g) {
// blue is biggest
if (b > 1.0f) {
r = r / b;
g = g / b;
b = 1.0f;
}
}
rgb[0] = byte(255.0f*r);
rgb[1] = byte(255.0f*g);
rgb[2] = byte(255.0f*b);
}
void colorRGBtoXY(const byte* rgb, float* xy) //rgb to coordinates (https://www.developers.meethue.com/documentation/color-conversions-rgb-xy)
{
float X = rgb[0] * 0.664511f + rgb[1] * 0.154324f + rgb[2] * 0.162028f;
float Y = rgb[0] * 0.283881f + rgb[1] * 0.668433f + rgb[2] * 0.047685f;
float Z = rgb[0] * 0.000088f + rgb[1] * 0.072310f + rgb[2] * 0.986039f;
xy[0] = X / (X + Y + Z);
xy[1] = Y / (X + Y + Z);
}
#endif // WLED_DISABLE_HUESYNC
//RRGGBB / WWRRGGBB order for hex
void colorFromDecOrHexString(byte* rgb, const char* in)
{
if (in[0] == 0) return;
char first = in[0];
uint32_t c = 0;
if (first == '#' || first == 'h' || first == 'H') //is HEX encoded
{
c = strtoul(in +1, NULL, 16);
} else
{
c = strtoul(in, NULL, 10);
}
rgb[0] = R(c);
rgb[1] = G(c);
rgb[2] = B(c);
rgb[3] = W(c);
}
//contrary to the colorFromDecOrHexString() function, this uses the more standard RRGGBB / RRGGBBWW order
bool colorFromHexString(byte* rgb, const char* in) {
if (in == nullptr) return false;
size_t inputSize = strnlen(in, 9);
if (inputSize != 6 && inputSize != 8) return false;
uint32_t c = strtoul(in, NULL, 16);
if (inputSize == 6) {
rgb[0] = (c >> 16);
rgb[1] = (c >> 8);
rgb[2] = c ;
} else {
rgb[0] = (c >> 24);
rgb[1] = (c >> 16);
rgb[2] = (c >> 8);
rgb[3] = c ;
}
return true;
}
static inline float minf(float v, float w)
{
if (w > v) return v;
return w;
}
static inline float maxf(float v, float w)
{
if (w > v) return w;
return v;
}
// adjust RGB values based on color temperature in K (range [2800-10200]) (https://en.wikipedia.org/wiki/Color_balance)
// called from bus manager when color correction is enabled!
uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb)
{
//remember so that slow colorKtoRGB() doesn't have to run for every setPixelColor()
static byte correctionRGB[4] = {0,0,0,0};
static uint16_t lastKelvin = 0;
if (lastKelvin != kelvin) colorKtoRGB(kelvin, correctionRGB); // convert Kelvin to RGB
lastKelvin = kelvin;
byte rgbw[4];
rgbw[0] = ((uint16_t) correctionRGB[0] * R(rgb)) /255; // correct R
rgbw[1] = ((uint16_t) correctionRGB[1] * G(rgb)) /255; // correct G
rgbw[2] = ((uint16_t) correctionRGB[2] * B(rgb)) /255; // correct B
rgbw[3] = W(rgb);
return RGBW32(rgbw[0],rgbw[1],rgbw[2],rgbw[3]);
}
//approximates a Kelvin color temperature from an RGB color.
//this does no check for the "whiteness" of the color,
//so should be used combined with a saturation check (as done by auto-white)
//values from http://www.vendian.org/mncharity/dir3/blackbody/UnstableURLs/bbr_color.html (10deg)
//equation spreadsheet at https://bit.ly/30RkHaN
//accuracy +-50K from 1900K up to 8000K
//minimum returned: 1900K, maximum returned: 10091K (range of 8192)
uint16_t approximateKelvinFromRGB(uint32_t rgb) {
//if not either red or blue is 255, color is dimmed. Scale up
uint8_t r = R(rgb), b = B(rgb);
if (r == b) return 6550; //red == blue at about 6600K (also can't go further if both R and B are 0)
if (r > b) {
//scale blue up as if red was at 255
uint16_t scale = 0xFFFF / r; //get scale factor (range 257-65535)
b = ((uint16_t)b * scale) >> 8;
//For all temps K<6600 R is bigger than B (for full bri colors R=255)
//-> Use 9 linear approximations for blackbody radiation blue values from 2000-6600K (blue is always 0 below 2000K)
if (b < 33) return 1900 + b *6;
if (b < 72) return 2100 + (b-33) *10;
if (b < 101) return 2492 + (b-72) *14;
if (b < 132) return 2900 + (b-101) *16;
if (b < 159) return 3398 + (b-132) *19;
if (b < 186) return 3906 + (b-159) *22;
if (b < 210) return 4500 + (b-186) *25;
if (b < 230) return 5100 + (b-210) *30;
return 5700 + (b-230) *34;
} else {
//scale red up as if blue was at 255
uint16_t scale = 0xFFFF / b; //get scale factor (range 257-65535)
r = ((uint16_t)r * scale) >> 8;
//For all temps K>6600 B is bigger than R (for full bri colors B=255)
//-> Use 2 linear approximations for blackbody radiation red values from 6600-10091K (blue is always 0 below 2000K)
if (r > 225) return 6600 + (254-r) *50;
uint16_t k = 8080 + (225-r) *86;
return (k > 10091) ? 10091 : k;
}
}
// gamma lookup tables used for color correction (filled on 1st use (cfg.cpp & set.cpp))
uint8_t NeoGammaWLEDMethod::gammaT[256];
uint8_t NeoGammaWLEDMethod::gammaT_inv[256];
// re-calculates & fills gamma tables
void NeoGammaWLEDMethod::calcGammaTable(float gamma)
{
float gamma_inv = 1.0f / gamma; // inverse gamma
for (size_t i = 1; i < 256; i++) {
gammaT[i] = (int)(powf((float)i / 255.0f, gamma) * 255.0f + 0.5f);
gammaT_inv[i] = (int)(powf(((float)i - 0.5f) / 255.0f, gamma_inv) * 255.0f + 0.5f);
//DEBUG_PRINTF_P(PSTR("gammaT[%d] = %d gammaT_inv[%d] = %d\n"), i, gammaT[i], i, gammaT_inv[i]);
}
gammaT[0] = 0;
gammaT_inv[0] = 0;
}
uint8_t IRAM_ATTR_YN NeoGammaWLEDMethod::Correct(uint8_t value)
{
if (!gammaCorrectCol) return value;
return gammaT[value];
}
uint32_t IRAM_ATTR_YN NeoGammaWLEDMethod::inverseGamma32(uint32_t color)
{
if (!gammaCorrectCol) return color;
uint8_t w = W(color);
uint8_t r = R(color);
uint8_t g = G(color);
uint8_t b = B(color);
w = gammaT_inv[w];
r = gammaT_inv[r];
g = gammaT_inv[g];
b = gammaT_inv[b];
return RGBW32(r, g, b, w);
}