3232 lines
158 KiB
C++
3232 lines
158 KiB
C++
#pragma once
|
|
|
|
/*
|
|
@title MoonModules WLED - audioreactive usermod
|
|
@file audio_reactive.h
|
|
@repo https://github.com/MoonModules/WLED, submit changes to this file as PRs to MoonModules/WLED
|
|
@Authors https://github.com/MoonModules/WLED/commits/mdev/
|
|
@Copyright © 2024 Github MoonModules Commit Authors (contact moonmodules@icloud.com for details)
|
|
@license Licensed under the EUPL-1.2 or later
|
|
|
|
*/
|
|
|
|
|
|
#include "wled.h"
|
|
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
|
|
#include <driver/i2s.h>
|
|
#include <driver/adc.h>
|
|
|
|
#include <math.h>
|
|
#endif
|
|
|
|
#if defined(ARDUINO_ARCH_ESP32) && (defined(WLED_DEBUG) || defined(SR_DEBUG))
|
|
#include <esp_timer.h>
|
|
#endif
|
|
|
|
/*
|
|
* Usermods allow you to add own functionality to WLED more easily
|
|
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
|
|
*
|
|
* This is an audioreactive v2 usermod.
|
|
* ....
|
|
*/
|
|
|
|
|
|
#if defined(WLEDMM_FASTPATH) && defined(CONFIG_IDF_TARGET_ESP32S3) || defined(CONFIG_IDF_TARGET_ESP32)
|
|
#define FFT_USE_SLIDING_WINDOW // perform FFT with sliding window = 50% overlap
|
|
#endif
|
|
|
|
|
|
#define FFT_PREFER_EXACT_PEAKS // use different FFT windowing -> results in "sharper" peaks and less "leaking" into other frequencies
|
|
//#define SR_STATS
|
|
|
|
#if !defined(FFTTASK_PRIORITY)
|
|
#if defined(WLEDMM_FASTPATH) && !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32C3) && defined(ARDUINO_ARCH_ESP32)
|
|
// FASTPATH: use higher priority, to avoid that webserver (ws, json, etc) delays sample processing
|
|
//#define FFTTASK_PRIORITY 3 // competing with async_tcp
|
|
#define FFTTASK_PRIORITY 4 // above async_tcp
|
|
#else
|
|
#define FFTTASK_PRIORITY 1 // standard: looptask prio
|
|
//#define FFTTASK_PRIORITY 2 // above looptask, below async_tcp
|
|
#endif
|
|
#endif
|
|
|
|
#if !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32C3)
|
|
// this applies "pink noise scaling" to FFT results before computing the major peak for effects.
|
|
// currently only for ESP32-S3 and classic ESP32, due to increased runtime
|
|
#define FFT_MAJORPEAK_HUMAN_EAR
|
|
#endif
|
|
|
|
// high-resolution type for input filters
|
|
#if defined(ARDUINO_ARCH_ESP32) && !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32C3)
|
|
#define SR_HIRES_TYPE double // ESP32 and ESP32-S3 (with FPU) are fast enough to use "double"
|
|
#else
|
|
#define SR_HIRES_TYPE float // prefer faster type on slower boards (-S2, -C3)
|
|
#endif
|
|
|
|
// Comment/Uncomment to toggle usb serial debugging
|
|
// #define MIC_LOGGER // MIC sampling & sound input debugging (serial plotter)
|
|
// #define FFT_SAMPLING_LOG // FFT result debugging
|
|
// #define SR_DEBUG // generic SR DEBUG messages
|
|
|
|
#ifdef SR_DEBUG
|
|
#define DEBUGSR_PRINT(x) DEBUGOUT(x)
|
|
#define DEBUGSR_PRINTLN(x) DEBUGOUTLN(x)
|
|
#define DEBUGSR_PRINTF(x...) DEBUGOUTF(x)
|
|
#else
|
|
#define DEBUGSR_PRINT(x)
|
|
#define DEBUGSR_PRINTLN(x)
|
|
#define DEBUGSR_PRINTF(x...)
|
|
#endif
|
|
|
|
#if defined(SR_DEBUG)
|
|
#define ERRORSR_PRINT(x) DEBUGSR_PRINT(x)
|
|
#define ERRORSR_PRINTLN(x) DEBUGSR_PRINTLN(x)
|
|
#define ERRORSR_PRINTF(x...) DEBUGSR_PRINTF(x)
|
|
#else
|
|
#if defined(WLED_DEBUG)
|
|
#define ERRORSR_PRINT(x) DEBUG_PRINT(x)
|
|
#define ERRORSR_PRINTLN(x) DEBUG_PRINTLN(x)
|
|
#define ERRORSR_PRINTF(x...) DEBUG_PRINTF(x)
|
|
#else
|
|
#define ERRORSR_PRINT(x)
|
|
#define ERRORSR_PRINTLN(x)
|
|
#define ERRORSR_PRINTF(x...)
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(MIC_LOGGER) || defined(FFT_SAMPLING_LOG)
|
|
#define PLOT_PRINT(x) DEBUGOUT(x)
|
|
#define PLOT_PRINTLN(x) DEBUGOUTLN(x)
|
|
#define PLOT_PRINTF(x...) DEBUGOUTF(x)
|
|
#define PLOT_FLUSH() DEBUGOUTFlush()
|
|
#else
|
|
#define PLOT_PRINT(x)
|
|
#define PLOT_PRINTLN(x)
|
|
#define PLOT_PRINTF(x...)
|
|
#define PLOT_FLUSH()
|
|
#endif
|
|
|
|
// sanity checks
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
// we need more space in for oappend() stack buffer -> SETTINGS_STACK_BUF_SIZE and CONFIG_ASYNC_TCP_TASK_STACK_SIZE
|
|
#if SETTINGS_STACK_BUF_SIZE < 3904 // 3904 is required for WLEDMM-0.14.0-b28
|
|
#warning please increase SETTINGS_STACK_BUF_SIZE >= 3904
|
|
#endif
|
|
#if (CONFIG_ASYNC_TCP_TASK_STACK_SIZE - SETTINGS_STACK_BUF_SIZE) < 4352 // at least 4096+256 words of free task stack is needed by async_tcp alone
|
|
#error remaining async_tcp stack will be too low - please increase CONFIG_ASYNC_TCP_TASK_STACK_SIZE
|
|
#endif
|
|
#endif
|
|
|
|
// audiosync constants
|
|
#define AUDIOSYNC_NONE 0x00 // UDP sound sync off
|
|
#define AUDIOSYNC_SEND 0x01 // UDP sound sync - send mode
|
|
#define AUDIOSYNC_REC 0x02 // UDP sound sync - receiver mode
|
|
#define AUDIOSYNC_REC_PLUS 0x06 // UDP sound sync - receiver + local mode (uses local input if no receiving udp sound)
|
|
#define AUDIOSYNC_IDLE_MS 2500 // timeout for "receiver idle" (milliseconds)
|
|
|
|
#define ERR_REBOOT_NEEDED 98 // WLEDMM: reboot needed after changing hardware setting
|
|
#define ERR_POWEROFF_NEEDED 99 // WLEDMM: power-cycle needed after changing hardware setting
|
|
|
|
static volatile bool disableSoundProcessing = false; // if true, sound processing (FFT, filters, AGC) will be suspended. "volatile" as its shared between tasks.
|
|
static uint8_t audioSyncEnabled = AUDIOSYNC_NONE; // bit field: bit 0 - send, bit 1 - receive, bit 2 - use local if not receiving
|
|
static bool audioSyncSequence = true; // if true, the receiver will drop out-of-sequence packets
|
|
static bool udpSyncConnected = false; // UDP connection status -> true if connected to multicast group
|
|
|
|
#define NUM_GEQ_CHANNELS 16 // number of frequency channels. Don't change !!
|
|
|
|
// audioreactive variables
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
static float micDataReal = 0.0f; // MicIn data with full 24bit resolution - lowest 8bit after decimal point
|
|
static float multAgc = 1.0f; // sample * multAgc = sampleAgc. Our AGC multiplier
|
|
static float sampleAvg = 0.0f; // Smoothed Average sample - sampleAvg < 1 means "quiet" (simple noise gate)
|
|
static float sampleAgc = 0.0f; // Smoothed AGC sample
|
|
#ifdef SR_SQUELCH
|
|
static uint8_t soundAgc = 1; // Automagic gain control: 0 - none, 1 - normal, 2 - vivid, 3 - lazy (config value) - enable AGC if default "squelch" was provided
|
|
#else
|
|
static uint8_t soundAgc = 0; // Automagic gain control: 0 - none, 1 - normal, 2 - vivid, 3 - lazy (config value)
|
|
#endif
|
|
|
|
#endif
|
|
static float volumeSmth = 0.0f; // either sampleAvg or sampleAgc depending on soundAgc; smoothed sample
|
|
static float FFT_MajorPeak = 1.0f; // FFT: strongest (peak) frequency
|
|
static float FFT_Magnitude = 0.0f; // FFT: volume (magnitude) of peak frequency
|
|
static bool samplePeak = false; // Boolean flag for peak - used in effects. Responding routine may reset this flag. Auto-reset after strip.getMinShowDelay()
|
|
static bool udpSamplePeak = false; // Boolean flag for peak. Set at the same time as samplePeak, but reset by transmitAudioData
|
|
static unsigned long timeOfPeak = 0; // time of last sample peak detection.
|
|
volatile bool haveNewFFTResult = false; // flag to directly inform UDP sound sender when new FFT results are available (to reduce latency). Flag is reset at next UDP send
|
|
|
|
static uint8_t fftResult[NUM_GEQ_CHANNELS]= {0}; // Our calculated freq. channel result table to be used by effects
|
|
static float fftCalc[NUM_GEQ_CHANNELS] = {0.0f}; // Try and normalize fftBin values to a max of 4096, so that 4096/16 = 256. (also used by dynamics limiter)
|
|
static float fftAvg[NUM_GEQ_CHANNELS] = {0.0f}; // Calculated frequency channel results, with smoothing (used if dynamics limiter is ON)
|
|
|
|
static uint16_t zeroCrossingCount = 0; // number of zero crossings in the current batch of 512 samples
|
|
|
|
// TODO: probably best not used by receive nodes
|
|
static float agcSensitivity = 128; // AGC sensitivity estimation, based on agc gain (multAgc). calculated by getSensitivity(). range 0..255
|
|
|
|
// user settable parameters for limitSoundDynamics()
|
|
#ifdef UM_AUDIOREACTIVE_DYNAMICS_LIMITER_OFF
|
|
static bool limiterOn = false; // bool: enable / disable dynamics limiter
|
|
#else
|
|
static bool limiterOn = true;
|
|
#endif
|
|
static uint8_t micQuality = 0; // affects input filtering; 0 normal, 1 minimal filtering, 2 no filtering
|
|
#ifdef FFT_USE_SLIDING_WINDOW
|
|
static uint16_t attackTime = 24; // int: attack time in milliseconds. Default 0.024sec
|
|
static uint16_t decayTime = 250; // int: decay time in milliseconds. New default 250ms.
|
|
#else
|
|
static uint16_t attackTime = 50; // int: attack time in milliseconds. Default 0.08sec
|
|
static uint16_t decayTime = 300; // int: decay time in milliseconds. New default 300ms. Old default was 1.40sec
|
|
#endif
|
|
|
|
// peak detection
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
static void detectSamplePeak(void); // peak detection function (needs scaled FFT results in vReal[]) - no used for 8266 receive-only mode
|
|
#endif
|
|
static void autoResetPeak(void); // peak auto-reset function
|
|
static uint8_t maxVol = 31; // (was 10) Reasonable value for constant volume for 'peak detector', as it won't always trigger (deprecated)
|
|
static uint8_t binNum = 8; // Used to select the bin for FFT based beat detection (deprecated)
|
|
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
|
|
// use audio source class (ESP32 specific)
|
|
#include "audio_source.h"
|
|
constexpr int BLOCK_SIZE = 128; // I2S buffer size (samples)
|
|
|
|
// globals
|
|
static uint8_t inputLevel = 128; // UI slider value
|
|
#ifndef SR_SQUELCH
|
|
uint8_t soundSquelch = 10; // squelch value for volume reactive routines (config value)
|
|
#else
|
|
uint8_t soundSquelch = SR_SQUELCH; // squelch value for volume reactive routines (config value)
|
|
#endif
|
|
#ifndef SR_GAIN
|
|
uint8_t sampleGain = 60; // sample gain (config value)
|
|
#else
|
|
uint8_t sampleGain = SR_GAIN; // sample gain (config value)
|
|
#endif
|
|
|
|
// user settable options for FFTResult scaling
|
|
static uint8_t FFTScalingMode = 3; // 0 none; 1 optimized logarithmic; 2 optimized linear; 3 optimized square root
|
|
#ifndef SR_FREQ_PROF
|
|
static uint8_t pinkIndex = 0; // 0: default; 1: line-in; 2: IMNP441
|
|
#else
|
|
static uint8_t pinkIndex = SR_FREQ_PROF; // 0: default; 1: line-in; 2: IMNP441
|
|
#endif
|
|
|
|
|
|
//
|
|
// AGC presets
|
|
// Note: in C++, "const" implies "static" - no need to explicitly declare everything as "static const"
|
|
//
|
|
#define AGC_NUM_PRESETS 3 // AGC presets: normal, vivid, lazy
|
|
const double agcSampleDecay[AGC_NUM_PRESETS] = { 0.9994f, 0.9985f, 0.9997f}; // decay factor for sampleMax, in case the current sample is below sampleMax
|
|
const float agcZoneLow[AGC_NUM_PRESETS] = { 32, 28, 36}; // low volume emergency zone
|
|
const float agcZoneHigh[AGC_NUM_PRESETS] = { 240, 240, 248}; // high volume emergency zone
|
|
const float agcZoneStop[AGC_NUM_PRESETS] = { 336, 448, 304}; // disable AGC integrator if we get above this level
|
|
const float agcTarget0[AGC_NUM_PRESETS] = { 112, 144, 164}; // first AGC setPoint -> between 40% and 65%
|
|
const float agcTarget0Up[AGC_NUM_PRESETS] = { 88, 64, 116}; // setpoint switching value (a poor man's bang-bang)
|
|
const float agcTarget1[AGC_NUM_PRESETS] = { 220, 224, 216}; // second AGC setPoint -> around 85%
|
|
const double agcFollowFast[AGC_NUM_PRESETS] = { 1/192.f, 1/128.f, 1/256.f}; // quickly follow setpoint - ~0.15 sec
|
|
const double agcFollowSlow[AGC_NUM_PRESETS] = {1/6144.f,1/4096.f,1/8192.f}; // slowly follow setpoint - ~2-15 secs
|
|
const double agcControlKp[AGC_NUM_PRESETS] = { 0.6f, 1.5f, 0.65f}; // AGC - PI control, proportional gain parameter
|
|
const double agcControlKi[AGC_NUM_PRESETS] = { 1.7f, 1.85f, 1.2f}; // AGC - PI control, integral gain parameter
|
|
#if defined(WLEDMM_FASTPATH)
|
|
const float agcSampleSmooth[AGC_NUM_PRESETS] = { 1/8.f, 1/5.f, 1/12.f}; // smoothing factor for sampleAgc (use rawSampleAgc if you want the non-smoothed value)
|
|
#else
|
|
const float agcSampleSmooth[AGC_NUM_PRESETS] = { 1/12.f, 1/6.f, 1/16.f}; // smoothing factor for sampleAgc (use rawSampleAgc if you want the non-smoothed value)
|
|
#endif
|
|
// AGC presets end
|
|
|
|
static AudioSource *audioSource = nullptr;
|
|
static uint8_t useInputFilter = 0; // enables low-cut filtering. Applies before FFT.
|
|
|
|
//WLEDMM add experimental settings
|
|
static uint8_t micLevelMethod = 0; // 0=old "floating" miclev, 1=new "freeze" mode, 2=fast freeze mode (mode 2 may not work for you)
|
|
#if defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32C3)
|
|
static constexpr uint8_t averageByRMS = false; // false: use mean value, true: use RMS (root mean squared). use simpler method on slower MCUs.
|
|
#else
|
|
static constexpr uint8_t averageByRMS = true; // false: use mean value, true: use RMS (root mean squared). use better method on fast MCUs.
|
|
#endif
|
|
static uint8_t freqDist = 0; // 0=old 1=rightshift mode
|
|
static uint8_t fftWindow = 0; // FFT windowing function (0 = default)
|
|
#ifdef FFT_USE_SLIDING_WINDOW
|
|
static uint8_t doSlidingFFT = 1; // 1 = use sliding window FFT (faster & more accurate)
|
|
#endif
|
|
|
|
// variables used in effects
|
|
//static int16_t volumeRaw = 0; // either sampleRaw or rawSampleAgc depending on soundAgc
|
|
//static float my_magnitude =0.0f; // FFT_Magnitude, scaled by multAgc
|
|
|
|
// shared vars for debugging
|
|
#ifdef MIC_LOGGER
|
|
static volatile float micReal_min = 0.0f; // MicIn data min from last batch of samples
|
|
static volatile float micReal_avg = 0.0f; // MicIn data average (from last batch of samples)
|
|
static volatile float micReal_max = 0.0f; // MicIn data max from last batch of samples
|
|
#if 0
|
|
static volatile float micReal_min2 = 0.0f; // MicIn data min after filtering
|
|
static volatile float micReal_max2 = 0.0f; // MicIn data max after filtering
|
|
#endif
|
|
#endif
|
|
|
|
////////////////////
|
|
// Begin FFT Code //
|
|
////////////////////
|
|
|
|
// some prototypes, to ensure consistent interfaces
|
|
// static float mapf(float x, float in_min, float in_max, float out_min, float out_max); // map function for float
|
|
static float fftAddAvg(int from, int to); // average of several FFT result bins
|
|
void FFTcode(void * parameter); // audio processing task: read samples, run FFT, fill GEQ channels from FFT results
|
|
static void runMicFilter(uint16_t numSamples, float *sampleBuffer); // pre-filtering of raw samples (band-pass)
|
|
static void postProcessFFTResults(bool noiseGateOpen, int numberOfChannels, bool i2sFastpath); // post-processing and post-amp of GEQ channels
|
|
|
|
|
|
static TaskHandle_t FFT_Task = nullptr;
|
|
|
|
// Table of multiplication factors so that we can even out the frequency response.
|
|
#define MAX_PINK 10 // 0 = standard, 1= line-in (pink noise only), 2..4 = IMNP441, 5..6 = ICS-43434, ,7=SPM1423, 8..9 = userdef, 10= flat (no pink noise adjustment)
|
|
static const float fftResultPink[MAX_PINK+1][NUM_GEQ_CHANNELS] = {
|
|
{ 1.70f, 1.71f, 1.73f, 1.78f, 1.68f, 1.56f, 1.55f, 1.63f, 1.79f, 1.62f, 1.80f, 2.06f, 2.47f, 3.35f, 6.83f, 9.55f }, // 0 default from SR WLED
|
|
// { 1.30f, 1.32f, 1.40f, 1.46f, 1.52f, 1.57f, 1.68f, 1.80f, 1.89f, 2.00f, 2.11f, 2.21f, 2.30f, 2.39f, 3.09f, 4.34f }, // - Line-In Generic -> pink noise adjustment only
|
|
{ 2.35f, 1.32f, 1.32f, 1.40f, 1.48f, 1.57f, 1.68f, 1.80f, 1.89f, 1.95f, 2.14f, 2.26f, 2.50f, 2.90f, 4.20f, 6.50f }, // 1 Line-In CS5343 + DC blocker
|
|
|
|
{ 1.82f, 1.72f, 1.70f, 1.50f, 1.52f, 1.57f, 1.68f, 1.80f, 1.89f, 2.00f, 2.11f, 2.21f, 2.30f, 2.90f, 3.86f, 6.29f}, // 2 IMNP441 datasheet response profile * pink noise
|
|
{ 2.80f, 2.20f, 1.30f, 1.15f, 1.55f, 2.45f, 4.20f, 2.80f, 3.20f, 3.60f, 4.20f, 4.90f, 5.70f, 6.05f,10.50f,14.85f}, // 3 IMNP441 - big speaker, strong bass
|
|
// next one has not much visual differece compared to default IMNP441 profile
|
|
{ 12.0f, 6.60f, 2.60f, 1.15f, 1.35f, 2.05f, 2.85f, 2.50f, 2.85f, 3.30f, 2.25f, 4.35f, 3.80f, 3.75f, 6.50f, 9.00f}, // 4 IMNP441 - voice, or small speaker
|
|
|
|
{ 2.75f, 1.60f, 1.40f, 1.46f, 1.52f, 1.57f, 1.68f, 1.80f, 1.89f, 2.00f, 2.11f, 2.21f, 2.30f, 1.75f, 2.55f, 3.60f }, // 5 ICS-43434 datasheet response * pink noise
|
|
{ 2.90f, 1.25f, 0.75f, 1.08f, 2.35f, 3.55f, 3.60f, 3.40f, 2.75f, 3.45f, 4.40f, 6.35f, 6.80f, 6.80f, 8.50f,10.64f }, // 6 ICS-43434 - big speaker, strong bass
|
|
|
|
{ 1.65f, 1.00f, 1.05f, 1.30f, 1.48f, 1.30f, 1.80f, 3.00f, 1.50f, 1.65f, 2.56f, 3.00f, 2.60f, 2.30f, 5.00f, 3.00f }, // 7 SPM1423
|
|
{ 2.25f, 1.60f, 1.30f, 1.60f, 2.20f, 3.20f, 3.06f, 2.60f, 2.85f, 3.50f, 4.10f, 4.80f, 5.70f, 6.05f,10.50f,14.85f }, // 8 userdef #1 for ewowi (enhance median/high freqs)
|
|
{ 4.75f, 3.60f, 2.40f, 2.46f, 3.52f, 1.60f, 1.68f, 3.20f, 2.20f, 2.00f, 2.30f, 2.41f, 2.30f, 1.25f, 4.55f, 6.50f }, // 9 userdef #2 for softhack (mic hidden inside mini-shield)
|
|
|
|
{ 2.38f, 2.18f, 2.07f, 1.70f, 1.70f, 1.70f, 1.70f, 1.70f, 1.70f, 1.70f, 1.70f, 1.70f, 1.95f, 1.70f, 2.13f, 2.47f } // 10 almost FLAT (IMNP441 but no PINK noise adjustments)
|
|
};
|
|
|
|
/* how to make your own profile:
|
|
* ===============================
|
|
* preparation: make sure your microphone has direct line-of-sigh with the speaker, 1-2meter distance is best
|
|
* Prepare your HiFi equipment: disable all "Sound enhancements" - like Loudness, Equalizer, Bass Boost. Bass/Treble controls set to middle.
|
|
* Your HiFi equipment should receive its audio input from Line-In, SPDIF, HDMI, or another "undistorted" connection (like CDROM).
|
|
* Try not to use Bluetooth or MP3 when playing the "pink noise" audio. BT-audio and MP3 both perform "acoustic adjustments" that we don't want now.
|
|
|
|
* SR WLED: enable AGC ("standard" or "lazy"), set squelch to a low level, check that LEDs don't reacts in silence.
|
|
* SR WLED: select "Generic Line-In" as your Frequency Profile, "Linear" or "Square Root" as Frequency Scale
|
|
* SR WLED: Dynamic Limiter On, Dynamics Fall Time around 4200 - makes GEQ hold peaks for much longer
|
|
* SR WLED: Select GEQ effect, move all effect slider to max (i.e. right side)
|
|
|
|
* Measure: play Pink Noise for 2-3 minutes - for examples from youtube https://www.youtube.com/watch?v=ZXtimhT-ff4
|
|
* Measure: Take a Photo. Make sure that LEDs for each "bar" are well visible (ou need to count them later)
|
|
|
|
* Your own profile:
|
|
* - Target for each LED bar is 50% to 75% of the max height --> 8(high) x 16(wide) panel means target = 5. 32 x 16 means target = 22.
|
|
* - From left to right - count the LEDs in each of the 16 frequency columns (that's why you need the photo). This is the barheight for each channel.
|
|
* - math time! Find the multiplier that will bring each bar to to target.
|
|
* * in case of square root scale: multiplier = (target * target) / (barheight * barheight)
|
|
* * in case of linear scale: multiplier = target / barheight
|
|
*
|
|
* - replace one of the "userdef" lines with a copy of the parameter line for "Line-In",
|
|
* - go through your new "userdef" parameter line, multiply each entry with the mutliplier you found for that column.
|
|
|
|
* Compile + upload
|
|
* Test your new profile (same procedure as above). Iterate the process to improve results.
|
|
*/
|
|
|
|
// globals and FFT Output variables shared with animations
|
|
static float FFT_MajPeakSmth = 1.0f; // FFT: (peak) frequency, smooth
|
|
#if defined(WLED_DEBUG) || defined(SR_DEBUG) || defined(SR_STATS)
|
|
static float fftTaskCycle = 0; // avg cycle time for FFT task
|
|
static float fftTime = 0; // avg time for single FFT
|
|
static float sampleTime = 0; // avg (blocked) time for reading I2S samples
|
|
static float filterTime = 0; // avg time for filtering I2S samples
|
|
#endif
|
|
|
|
// FFT Task variables (filtering and post-processing)
|
|
static float lastFftCalc[NUM_GEQ_CHANNELS] = {0.0f}; // backup of last FFT channels (before postprocessing)
|
|
|
|
#if !defined(CONFIG_IDF_TARGET_ESP32C3)
|
|
// audio source parameters and constant
|
|
constexpr SRate_t SAMPLE_RATE = 22050; // Base sample rate in Hz - 22Khz is a standard rate. Physical sample time -> 23ms
|
|
//constexpr SRate_t SAMPLE_RATE = 16000; // 16kHz - use if FFTtask takes more than 20ms. Physical sample time -> 32ms
|
|
//constexpr SRate_t SAMPLE_RATE = 20480; // Base sample rate in Hz - 20Khz is experimental. Physical sample time -> 25ms
|
|
//constexpr SRate_t SAMPLE_RATE = 10240; // Base sample rate in Hz - previous default. Physical sample time -> 50ms
|
|
#ifndef WLEDMM_FASTPATH
|
|
#define FFT_MIN_CYCLE 21 // minimum time before FFT task is repeated. Use with 22Khz sampling
|
|
#else
|
|
#ifdef FFT_USE_SLIDING_WINDOW
|
|
#define FFT_MIN_CYCLE 8 // we only have 12ms to take 1/2 batch of samples
|
|
#else
|
|
#define FFT_MIN_CYCLE 15 // reduce min time, to allow faster catch-up when I2S is lagging
|
|
#endif
|
|
#endif
|
|
//#define FFT_MIN_CYCLE 30 // Use with 16Khz sampling
|
|
//#define FFT_MIN_CYCLE 23 // minimum time before FFT task is repeated. Use with 20Khz sampling
|
|
//#define FFT_MIN_CYCLE 46 // minimum time before FFT task is repeated. Use with 10Khz sampling
|
|
#else
|
|
// slightly lower the sampling rate for -C3, to improve stability
|
|
//constexpr SRate_t SAMPLE_RATE = 20480; // 20Khz; Physical sample time -> 25ms
|
|
//#define FFT_MIN_CYCLE 23 // minimum time before FFT task is repeated.
|
|
constexpr SRate_t SAMPLE_RATE = 18000; // 18Khz; Physical sample time -> 28ms
|
|
#define FFT_MIN_CYCLE 25 // minimum time before FFT task is repeated.
|
|
// try 16Khz in case your device still lags and responds too slowly.
|
|
//constexpr SRate_t SAMPLE_RATE = 16000; // 16Khz -> Physical sample time -> 32ms
|
|
//#define FFT_MIN_CYCLE 30 // minimum time before FFT task is repeated.
|
|
#endif
|
|
|
|
// FFT Constants
|
|
constexpr uint16_t samplesFFT = 512; // Samples in an FFT batch - This value MUST ALWAYS be a power of 2
|
|
constexpr uint16_t samplesFFT_2 = 256; // meaningful part of FFT results - only the "lower half" contains useful information.
|
|
// the following are observed values, supported by a bit of "educated guessing"
|
|
//#define FFT_DOWNSCALE 0.65f // 20kHz - downscaling factor for FFT results - "Flat-Top" window @20Khz, old freq channels
|
|
//#define FFT_DOWNSCALE 0.46f // downscaling factor for FFT results - for "Flat-Top" window @22Khz, new freq channels
|
|
#define FFT_DOWNSCALE 0.40f // downscaling factor for FFT results, RMS averaging
|
|
#define LOG_256 5.54517744f // log(256)
|
|
|
|
// These are the input and output vectors. Input vectors receive computed results from FFT.
|
|
static float* vReal = nullptr; // FFT sample inputs / freq output - these are our raw result bins
|
|
static float* vImag = nullptr; // imaginary parts
|
|
|
|
#ifdef FFT_MAJORPEAK_HUMAN_EAR
|
|
static float* pinkFactors = nullptr; // "pink noise" correction factors
|
|
constexpr float pinkcenter = 23.66; // sqrt(560) - center freq for scaling is 560 hz.
|
|
constexpr float binWidth = SAMPLE_RATE / (float)samplesFFT; // frequency range of each FFT result bin
|
|
#endif
|
|
|
|
|
|
// Create FFT object
|
|
// lib_deps += https://github.com/kosme/arduinoFFT#develop @ 1.9.2
|
|
#if !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32C3)
|
|
// these options actually cause slow-down on -S2 (-S2 doesn't have floating point hardware)
|
|
//#define FFT_SPEED_OVER_PRECISION // enables use of reciprocals (1/x etc), and an a few other speedups - WLEDMM not faster on ESP32
|
|
//#define FFT_SQRT_APPROXIMATION // enables "quake3" style inverse sqrt - WLEDMM slower on ESP32
|
|
#endif
|
|
#define sqrt(x) sqrtf(x) // little hack that reduces FFT time by 10-50% on ESP32 (as alternative to FFT_SQRT_APPROXIMATION)
|
|
#define sqrt_internal sqrtf // see https://github.com/kosme/arduinoFFT/pull/83
|
|
#include <arduinoFFT.h>
|
|
|
|
// Helper functions
|
|
|
|
// compute average of several FFT result bins
|
|
// linear average
|
|
static float fftAddAvgLin(int from, int to) {
|
|
float result = 0.0f;
|
|
for (int i = from; i <= to; i++) {
|
|
result += vReal[i];
|
|
}
|
|
return result / float(to - from + 1);
|
|
}
|
|
// RMS average
|
|
static float fftAddAvgRMS(int from, int to) {
|
|
double result = 0.0;
|
|
for (int i = from; i <= to; i++) {
|
|
result += vReal[i] * vReal[i];
|
|
}
|
|
return sqrtf(result / float(to - from + 1));
|
|
}
|
|
|
|
static float fftAddAvg(int from, int to) {
|
|
if (from == to) return vReal[from]; // small optimization
|
|
if (averageByRMS) return fftAddAvgRMS(from, to); // use RMS
|
|
else return fftAddAvgLin(from, to); // use linear average
|
|
}
|
|
|
|
#if defined(CONFIG_IDF_TARGET_ESP32C3)
|
|
constexpr bool skipSecondFFT = true;
|
|
#else
|
|
constexpr bool skipSecondFFT = false;
|
|
#endif
|
|
|
|
// allocate FFT sample buffers from heap
|
|
static bool alocateFFTBuffers(void) {
|
|
#ifdef SR_DEBUG
|
|
USER_PRINT(F("\nFree heap ")); USER_PRINTLN(ESP.getFreeHeap());
|
|
#endif
|
|
|
|
if (vReal) free(vReal); // should not happen
|
|
if (vImag) free(vImag); // should not happen
|
|
if ((vReal = (float*) calloc(sizeof(float), samplesFFT)) == nullptr) return false; // calloc or die
|
|
if ((vImag = (float*) calloc(sizeof(float), samplesFFT)) == nullptr) return false;
|
|
#ifdef FFT_MAJORPEAK_HUMAN_EAR
|
|
if (pinkFactors) free(pinkFactors);
|
|
if ((pinkFactors = (float*) calloc(sizeof(float), samplesFFT)) == nullptr) return false;
|
|
#endif
|
|
|
|
#ifdef SR_DEBUG
|
|
USER_PRINTLN("\nalocateFFTBuffers() completed successfully.");
|
|
USER_PRINT(F("Free heap: ")); USER_PRINTLN(ESP.getFreeHeap());
|
|
USER_PRINT("FFTtask free stack: "); USER_PRINTLN(uxTaskGetStackHighWaterMark(NULL));
|
|
USER_FLUSH();
|
|
#endif
|
|
return(true); // success
|
|
}
|
|
|
|
// High-Pass "DC blocker" filter
|
|
// see https://www.dsprelated.com/freebooks/filters/DC_Blocker.html
|
|
static void runDCBlocker(uint_fast16_t numSamples, float *sampleBuffer) {
|
|
constexpr float filterR = 0.990f; // around 40hz
|
|
static float xm1 = 0.0f;
|
|
static SR_HIRES_TYPE ym1 = 0.0f;
|
|
|
|
for (unsigned i=0; i < numSamples; i++) {
|
|
float value = sampleBuffer[i];
|
|
SR_HIRES_TYPE filtered = (SR_HIRES_TYPE)(value-xm1) + filterR*ym1;
|
|
xm1 = value;
|
|
ym1 = filtered;
|
|
sampleBuffer[i] = filtered;
|
|
}
|
|
}
|
|
|
|
//
|
|
// FFT main task
|
|
//
|
|
void FFTcode(void * parameter)
|
|
{
|
|
#ifdef SR_DEBUG
|
|
USER_FLUSH();
|
|
USER_PRINT("AR: "); USER_PRINT(pcTaskGetTaskName(NULL));
|
|
USER_PRINT(" task started on core "); USER_PRINT(xPortGetCoreID()); // causes trouble on -S2
|
|
USER_PRINT(" [prio="); USER_PRINT(uxTaskPriorityGet(NULL));
|
|
USER_PRINT(", min free stack="); USER_PRINT(uxTaskGetStackHighWaterMark(NULL));
|
|
USER_PRINTLN("]"); USER_FLUSH();
|
|
#endif
|
|
|
|
// see https://www.freertos.org/vtaskdelayuntil.html
|
|
const TickType_t xFrequency = FFT_MIN_CYCLE * portTICK_PERIOD_MS;
|
|
const TickType_t xFrequencyDouble = FFT_MIN_CYCLE * portTICK_PERIOD_MS * 2;
|
|
static bool isFirstRun = false;
|
|
|
|
#ifdef FFT_USE_SLIDING_WINDOW
|
|
static float* oldSamples = nullptr; // previous 50% of samples
|
|
static bool haveOldSamples = false; // for sliding window FFT
|
|
bool usingOldSamples = false;
|
|
if (!oldSamples) oldSamples = (float*) calloc(sizeof(float), samplesFFT_2); // allocate on first run
|
|
if (!oldSamples) { disableSoundProcessing = true; return; } // no memory -> die
|
|
#endif
|
|
|
|
bool success = true;
|
|
if ((vReal == nullptr) || (vImag == nullptr)) success = alocateFFTBuffers(); // allocate sample buffers on first run
|
|
if (success == false) { disableSoundProcessing = true; return; } // no memory -> die
|
|
|
|
// create FFT object - we have to do if after allocating buffers
|
|
#if defined(FFT_LIB_REV) && FFT_LIB_REV > 0x19
|
|
// arduinoFFT 2.x has a slightly different API
|
|
static ArduinoFFT<float> FFT = ArduinoFFT<float>( vReal, vImag, samplesFFT, SAMPLE_RATE, true);
|
|
#else
|
|
// recommended version optimized by @softhack007 (API version 1.9)
|
|
#if defined(WLED_ENABLE_HUB75MATRIX) && defined(CONFIG_IDF_TARGET_ESP32)
|
|
static float* windowWeighingFactors = nullptr;
|
|
if (!windowWeighingFactors) windowWeighingFactors = (float*) calloc(sizeof(float), samplesFFT); // cache for FFT windowing factors - use heap
|
|
#else
|
|
static float windowWeighingFactors[samplesFFT] = {0.0f}; // cache for FFT windowing factors - use global RAM
|
|
#endif
|
|
static ArduinoFFT<float> FFT = ArduinoFFT<float>( vReal, vImag, samplesFFT, SAMPLE_RATE, windowWeighingFactors);
|
|
#endif
|
|
|
|
#ifdef FFT_MAJORPEAK_HUMAN_EAR
|
|
// pre-compute pink noise scaling table
|
|
for(uint_fast16_t binInd = 0; binInd < samplesFFT; binInd++) {
|
|
float binFreq = binInd * binWidth + binWidth/2.0f;
|
|
if (binFreq > (SAMPLE_RATE * 0.42f))
|
|
binFreq = (SAMPLE_RATE * 0.42f) - 0.25 * (binFreq - (SAMPLE_RATE * 0.42f)); // suppress noise and aliasing
|
|
pinkFactors[binInd] = sqrtf(binFreq) / pinkcenter;
|
|
}
|
|
pinkFactors[0] *= 0.5; // suppress 0-42hz bin
|
|
#endif
|
|
|
|
TickType_t xLastWakeTime = xTaskGetTickCount();
|
|
for(;;) {
|
|
delay(1); // DO NOT DELETE THIS LINE! It is needed to give the IDLE(0) task enough time and to keep the watchdog happy.
|
|
// taskYIELD(), yield(), vTaskDelay() and esp_task_wdt_feed() didn't seem to work.
|
|
|
|
// Don't run FFT computing code if we're in Receive mode or in realtime mode
|
|
if (disableSoundProcessing || (audioSyncEnabled == AUDIOSYNC_REC)) {
|
|
isFirstRun = false;
|
|
#ifdef FFT_USE_SLIDING_WINDOW
|
|
haveOldSamples = false;
|
|
#endif
|
|
vTaskDelayUntil( &xLastWakeTime, xFrequency); // release CPU, and let I2S fill its buffers
|
|
continue;
|
|
}
|
|
|
|
#if defined(WLED_DEBUG) || defined(SR_DEBUG)|| defined(SR_STATS)
|
|
// timing
|
|
uint64_t start = esp_timer_get_time();
|
|
bool haveDoneFFT = false; // indicates if second measurement (FFT time) is valid
|
|
static uint64_t lastCycleStart = 0;
|
|
static uint64_t lastLastTime = 0;
|
|
if ((lastCycleStart > 0) && (lastCycleStart < start)) { // filter out overflows
|
|
uint64_t taskTimeInMillis = ((start - lastCycleStart) +5ULL) / 10ULL; // "+5" to ensure proper rounding
|
|
fftTaskCycle = (((taskTimeInMillis + lastLastTime)/2) *4 + fftTaskCycle*6)/10.0; // smart smooth
|
|
lastLastTime = taskTimeInMillis;
|
|
}
|
|
lastCycleStart = start;
|
|
#endif
|
|
|
|
// get a fresh batch of samples from I2S
|
|
memset(vReal, 0, sizeof(float) * samplesFFT); // start clean
|
|
#ifdef FFT_USE_SLIDING_WINDOW
|
|
uint16_t readOffset;
|
|
if (haveOldSamples && (doSlidingFFT > 0)) {
|
|
memcpy(vReal, oldSamples, sizeof(float) * samplesFFT_2); // copy first 50% from buffer
|
|
usingOldSamples = true;
|
|
readOffset = samplesFFT_2;
|
|
} else {
|
|
usingOldSamples = false;
|
|
readOffset = 0;
|
|
}
|
|
// read fresh samples, in chunks of 50%
|
|
do {
|
|
// this looks a bit cumbersome, but it onlyworks this way - any second instance of the getSamples() call delivers junk data.
|
|
if (audioSource) audioSource->getSamples(vReal+readOffset, samplesFFT_2);
|
|
readOffset += samplesFFT_2;
|
|
} while (readOffset < samplesFFT);
|
|
#else
|
|
if (audioSource) audioSource->getSamples(vReal, samplesFFT);
|
|
#endif
|
|
|
|
#if defined(WLED_DEBUG) || defined(SR_DEBUG)|| defined(SR_STATS)
|
|
// debug info in case that stack usage changes
|
|
static unsigned int minStackFree = UINT32_MAX;
|
|
unsigned int stackFree = uxTaskGetStackHighWaterMark(NULL);
|
|
if (minStackFree > stackFree) {
|
|
minStackFree = stackFree;
|
|
DEBUGSR_PRINTF("|| %-9s min free stack %d\n", pcTaskGetTaskName(NULL), minStackFree); //WLEDMM
|
|
}
|
|
// timing
|
|
if (start < esp_timer_get_time()) { // filter out overflows
|
|
uint64_t sampleTimeInMillis = (esp_timer_get_time() - start +5ULL) / 10ULL; // "+5" to ensure proper rounding
|
|
sampleTime = (sampleTimeInMillis*3 + sampleTime*7)/10.0; // smooth
|
|
}
|
|
start = esp_timer_get_time(); // start measuring filter time
|
|
#endif
|
|
|
|
xLastWakeTime = xTaskGetTickCount(); // update "last unblocked time" for vTaskDelay
|
|
isFirstRun = !isFirstRun; // toggle throttle
|
|
|
|
#ifdef MIC_LOGGER
|
|
float datMin = 0.0f;
|
|
float datMax = 0.0f;
|
|
double datAvg = 0.0f;
|
|
for (int i=0; i < samplesFFT; i++) {
|
|
if (i==0) {
|
|
datMin = datMax = vReal[i];
|
|
} else {
|
|
if (datMin > vReal[i]) datMin = vReal[i];
|
|
if (datMax < vReal[i]) datMax = vReal[i];
|
|
}
|
|
datAvg += vReal[i];
|
|
}
|
|
#endif
|
|
|
|
#if defined(WLEDMM_FASTPATH) && !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32C3) && defined(ARDUINO_ARCH_ESP32)
|
|
// experimental - be nice to LED update task (trying to avoid flickering) - dual core only
|
|
#if FFTTASK_PRIORITY > 1
|
|
if (strip.isServicing()) delay(1);
|
|
#endif
|
|
#endif
|
|
|
|
// normal mode: filter everything
|
|
float *samplesStart = vReal;
|
|
uint16_t sampleCount = samplesFFT;
|
|
#ifdef FFT_USE_SLIDING_WINDOW
|
|
if (usingOldSamples) {
|
|
// sliding window mode: only latest 50% need filtering
|
|
samplesStart = vReal + samplesFFT_2;
|
|
sampleCount = samplesFFT_2;
|
|
}
|
|
#endif
|
|
// band pass filter - can reduce noise floor by a factor of 50
|
|
// downside: frequencies below 100Hz will be ignored
|
|
bool doDCRemoval = false; // DCRemove is only necessary if we don't use any kind of low-cut filtering
|
|
if ((useInputFilter > 0) && (useInputFilter < 99)) {
|
|
switch(useInputFilter) {
|
|
case 1: runMicFilter(sampleCount, samplesStart); break; // PDM microphone bandpass
|
|
case 2: runDCBlocker(sampleCount, samplesStart); break; // generic Low-Cut + DC blocker (~40hz cut-off)
|
|
default: doDCRemoval = true; break;
|
|
}
|
|
} else doDCRemoval = true;
|
|
|
|
#if defined(WLED_DEBUG) || defined(SR_DEBUG)|| defined(SR_STATS)
|
|
// timing measurement
|
|
if (start < esp_timer_get_time()) { // filter out overflows
|
|
uint64_t filterTimeInMillis = (esp_timer_get_time() - start +5ULL) / 10ULL; // "+5" to ensure proper rounding
|
|
filterTime = (filterTimeInMillis*3 + filterTime*7)/10.0; // smooth
|
|
}
|
|
start = esp_timer_get_time(); // start measuring FFT time
|
|
#endif
|
|
|
|
// set imaginary parts to 0
|
|
memset(vImag, 0, sizeof(float) * samplesFFT);
|
|
|
|
#ifdef FFT_USE_SLIDING_WINDOW
|
|
memcpy(oldSamples, vReal+samplesFFT_2, sizeof(float) * samplesFFT_2); // copy last 50% to buffer (for sliding window FFT)
|
|
haveOldSamples = true;
|
|
#endif
|
|
|
|
// find highest sample in the batch, and count zero crossings
|
|
float maxSample = 0.0f; // max sample from FFT batch
|
|
uint_fast16_t newZeroCrossingCount = 0;
|
|
for (int i=0; i < samplesFFT; i++) {
|
|
// pick our our current mic sample - we take the max value from all samples that go into FFT
|
|
if ((vReal[i] <= (INT16_MAX - 1024)) && (vReal[i] >= (INT16_MIN + 1024))) { //skip extreme values - normally these are artefacts
|
|
#ifdef FFT_USE_SLIDING_WINDOW
|
|
if (usingOldSamples) {
|
|
if ((i >= samplesFFT_2) && (fabsf(vReal[i]) > maxSample)) maxSample = fabsf(vReal[i]); // only look at newest 50%
|
|
} else
|
|
#endif
|
|
if (fabsf((float)vReal[i]) > maxSample) maxSample = fabsf((float)vReal[i]);
|
|
}
|
|
// WLED-MM/TroyHacks: Calculate zero crossings
|
|
//
|
|
if (i < (samplesFFT-1)) {
|
|
if (__builtin_signbit(vReal[i]) != __builtin_signbit(vReal[i+1])) // test sign bit: sign changed -> zero crossing
|
|
newZeroCrossingCount++;
|
|
}
|
|
}
|
|
newZeroCrossingCount = (newZeroCrossingCount*2)/3; // reduce value so it typically stays below 256
|
|
zeroCrossingCount = newZeroCrossingCount; // update only once, to avoid that effects pick up an intermediate value
|
|
|
|
// release highest sample to volume reactive effects early - not strictly necessary here - could also be done at the end of the function
|
|
// early release allows the filters (getSample() and agcAvg()) to work with fresh values - we will have matching gain and noise gate values when we want to process the FFT results.
|
|
micDataReal = maxSample;
|
|
#ifdef MIC_LOGGER
|
|
micReal_min = datMin;
|
|
micReal_max = datMax;
|
|
micReal_avg = datAvg / samplesFFT;
|
|
#if 0
|
|
// compute mix/max again after filering - usefull for filter debugging
|
|
for (int i=0; i < samplesFFT; i++) {
|
|
if (i==0) {
|
|
datMin = datMax = vReal[i];
|
|
} else {
|
|
if (datMin > vReal[i]) datMin = vReal[i];
|
|
if (datMax < vReal[i]) datMax = vReal[i];
|
|
}
|
|
}
|
|
micReal_min2 = datMin;
|
|
micReal_max2 = datMax;
|
|
#endif
|
|
#endif
|
|
|
|
float wc = 1.0; // FFT window correction factor, relative to Blackman_Harris
|
|
|
|
// run FFT (takes 3-5ms on ESP32)
|
|
if (fabsf(volumeSmth) > 0.25f) { // noise gate open
|
|
if ((skipSecondFFT == false) || (isFirstRun == true)) {
|
|
// run FFT (takes 2-3ms on ESP32, ~12ms on ESP32-S2, ~30ms on -C3)
|
|
if (doDCRemoval) FFT.dcRemoval(); // remove DC offset
|
|
switch(fftWindow) { // apply FFT window
|
|
case 1:
|
|
FFT.windowing(FFTWindow::Hann, FFTDirection::Forward); // recommended for 50% overlap
|
|
wc = 0.66415918066; // 1.8554726898 * 2.0
|
|
break;
|
|
case 2:
|
|
FFT.windowing( FFTWindow::Nuttall, FFTDirection::Forward);
|
|
wc = 0.9916873881f; // 2.8163172034 * 2.0
|
|
break;
|
|
case 5:
|
|
FFT.windowing( FFTWindow::Blackman, FFTDirection::Forward);
|
|
wc = 0.84762867875f; // 2.3673474360 * 2.0
|
|
break;
|
|
case 3:
|
|
FFT.windowing( FFTWindow::Hamming, FFTDirection::Forward);
|
|
wc = 0.664159180663f; // 1.8549343278 * 2.0
|
|
break;
|
|
case 4:
|
|
FFT.windowing( FFTWindow::Flat_top, FFTDirection::Forward); // Weigh data using "Flat Top" function - better amplitude preservation, low frequency accuracy
|
|
wc = 1.276771793156f; // 3.5659039231 * 2.0
|
|
break;
|
|
case 0: // falls through
|
|
default:
|
|
FFT.windowing(FFTWindow::Blackman_Harris, FFTDirection::Forward); // Weigh data using "Blackman- Harris" window - sharp peaks due to excellent sideband rejection
|
|
wc = 1.0f; // 2.7929062517 * 2.0
|
|
}
|
|
#ifdef FFT_USE_SLIDING_WINDOW
|
|
if (usingOldSamples) wc = wc * 1.10f; // compensate for loss caused by averaging
|
|
#endif
|
|
|
|
FFT.compute( FFTDirection::Forward ); // Compute FFT
|
|
FFT.complexToMagnitude(); // Compute magnitudes
|
|
vReal[0] = 0; // The remaining DC offset on the signal produces a strong spike on position 0 that should be eliminated to avoid issues.
|
|
|
|
float last_majorpeak = FFT_MajorPeak;
|
|
float last_magnitude = FFT_Magnitude;
|
|
|
|
#ifdef FFT_MAJORPEAK_HUMAN_EAR
|
|
// scale FFT results
|
|
for(uint_fast16_t binInd = 0; binInd < samplesFFT; binInd++)
|
|
vReal[binInd] *= pinkFactors[binInd];
|
|
#endif
|
|
|
|
#if defined(FFT_LIB_REV) && FFT_LIB_REV > 0x19
|
|
// arduinoFFT 2.x has a slightly different API
|
|
FFT.majorPeak(&FFT_MajorPeak, &FFT_Magnitude);
|
|
#else
|
|
FFT.majorPeak(FFT_MajorPeak, FFT_Magnitude); // let the effects know which freq was most dominant
|
|
#endif
|
|
FFT_Magnitude *= wc; // apply correction factor
|
|
|
|
if (FFT_MajorPeak < (SAMPLE_RATE / samplesFFT)) {FFT_MajorPeak = 1.0f; FFT_Magnitude = 0;} // too low - use zero
|
|
if (FFT_MajorPeak > (0.42f * SAMPLE_RATE)) {FFT_MajorPeak = last_majorpeak; FFT_Magnitude = last_magnitude;} // too high - keep last peak
|
|
|
|
#ifdef FFT_MAJORPEAK_HUMAN_EAR
|
|
// undo scaling - we want unmodified values for FFTResult[] computations
|
|
for(uint_fast16_t binInd = 0; binInd < samplesFFT; binInd++)
|
|
vReal[binInd] *= 1.0f/pinkFactors[binInd];
|
|
//fix peak magnitude
|
|
if ((FFT_MajorPeak > (binWidth/1.25f)) && (FFT_MajorPeak < (SAMPLE_RATE/2.2f)) && (FFT_Magnitude > 4.0f)) {
|
|
unsigned peakBin = constrain((int)((FFT_MajorPeak + binWidth/2.0f) / binWidth), 0, samplesFFT -1);
|
|
FFT_Magnitude *= fmaxf(1.0f/pinkFactors[peakBin], 1.0f);
|
|
}
|
|
#endif
|
|
FFT_MajorPeak = constrain(FFT_MajorPeak, 1.0f, 11025.0f); // restrict value to range expected by effects
|
|
FFT_MajPeakSmth = FFT_MajPeakSmth + 0.42 * (FFT_MajorPeak - FFT_MajPeakSmth); // I like this "swooping peak" look
|
|
|
|
} else { // skip second run --> clear fft results, keep peaks
|
|
memset(vReal, 0, sizeof(float) * samplesFFT);
|
|
}
|
|
#if defined(WLED_DEBUG) || defined(SR_DEBUG) || defined(SR_STATS)
|
|
haveDoneFFT = true;
|
|
#endif
|
|
|
|
} else { // noise gate closed - only clear results as FFT was skipped. MIC samples are still valid when we do this.
|
|
memset(vReal, 0, sizeof(float) * samplesFFT);
|
|
FFT_MajorPeak = 1;
|
|
FFT_Magnitude = 0.001;
|
|
}
|
|
|
|
if ((skipSecondFFT == false) || (isFirstRun == true)) {
|
|
for (int i = 0; i < samplesFFT; i++) {
|
|
float t = fabsf(vReal[i]); // just to be sure - values in fft bins should be positive any way
|
|
vReal[i] = t / 16.0f; // Reduce magnitude. Want end result to be scaled linear and ~4096 max.
|
|
} // for()
|
|
|
|
// mapping of FFT result bins to frequency channels
|
|
//if (fabsf(sampleAvg) > 0.25f) { // noise gate open
|
|
if (fabsf(volumeSmth) > 0.25f) { // noise gate open
|
|
//WLEDMM: different distributions
|
|
if (freqDist == 0) {
|
|
/* new mapping, optimized for 22050 Hz by softhack007 --- update: removed overlap */
|
|
// bins frequency range
|
|
if (useInputFilter==1) {
|
|
// skip frequencies below 100hz
|
|
fftCalc[ 0] = wc * 0.8f * fftAddAvg(3,3);
|
|
fftCalc[ 1] = wc * 0.9f * fftAddAvg(4,4);
|
|
fftCalc[ 2] = wc * fftAddAvg(5,5);
|
|
fftCalc[ 3] = wc * fftAddAvg(6,6);
|
|
// don't use the last bins from 206 to 255.
|
|
fftCalc[15] = wc * fftAddAvg(165,205) * 0.75f; // 40 7106 - 8828 high -- with some damping
|
|
} else {
|
|
fftCalc[ 0] = wc * fftAddAvg(1,1); // 1 43 - 86 sub-bass
|
|
fftCalc[ 1] = wc * fftAddAvg(2,2); // 1 86 - 129 bass
|
|
fftCalc[ 2] = wc * fftAddAvg(3,4); // 2 129 - 216 bass
|
|
fftCalc[ 3] = wc * fftAddAvg(5,6); // 2 216 - 301 bass + midrange
|
|
// don't use the last bins from 216 to 255. They are usually contaminated by aliasing (aka noise)
|
|
fftCalc[15] = wc * fftAddAvg(165,215) * 0.70f; // 50 7106 - 9259 high -- with some damping
|
|
}
|
|
fftCalc[ 4] = wc * fftAddAvg(7,9); // 3 301 - 430 midrange
|
|
fftCalc[ 5] = wc * fftAddAvg(10,12); // 3 430 - 560 midrange
|
|
fftCalc[ 6] = wc * fftAddAvg(13,18); // 5 560 - 818 midrange
|
|
fftCalc[ 7] = wc * fftAddAvg(19,25); // 7 818 - 1120 midrange -- 1Khz should always be the center !
|
|
fftCalc[ 8] = wc * fftAddAvg(26,32); // 7 1120 - 1421 midrange
|
|
fftCalc[ 9] = wc * fftAddAvg(33,43); // 9 1421 - 1895 midrange
|
|
fftCalc[10] = wc * fftAddAvg(44,55); // 12 1895 - 2412 midrange + high mid
|
|
fftCalc[11] = wc * fftAddAvg(56,69); // 14 2412 - 3015 high mid
|
|
fftCalc[12] = wc * fftAddAvg(70,85); // 16 3015 - 3704 high mid
|
|
fftCalc[13] = wc * fftAddAvg(86,103); // 18 3704 - 4479 high mid
|
|
fftCalc[14] = wc * fftAddAvg(104,164) * 0.88f; // 61 4479 - 7106 high mid + high -- with slight damping
|
|
} else if (freqDist == 1) { //WLEDMM: Rightshift: note ewowi: frequencies in comments are not correct
|
|
if (useInputFilter==1) {
|
|
// skip frequencies below 100hz
|
|
fftCalc[ 0] = wc * 0.8f * fftAddAvg(1,1);
|
|
fftCalc[ 1] = wc * 0.9f * fftAddAvg(2,2);
|
|
fftCalc[ 2] = wc * fftAddAvg(3,3);
|
|
fftCalc[ 3] = wc * fftAddAvg(4,4);
|
|
// don't use the last bins from 206 to 255.
|
|
fftCalc[15] = wc * fftAddAvg(165,205) * 0.75f; // 40 7106 - 8828 high -- with some damping
|
|
} else {
|
|
fftCalc[ 0] = wc * fftAddAvg(1,1); // 1 43 - 86 sub-bass
|
|
fftCalc[ 1] = wc * fftAddAvg(2,2); // 1 86 - 129 bass
|
|
fftCalc[ 2] = wc * fftAddAvg(3,3); // 2 129 - 216 bass
|
|
fftCalc[ 3] = wc * fftAddAvg(4,4); // 2 216 - 301 bass + midrange
|
|
// don't use the last bins from 216 to 255. They are usually contaminated by aliasing (aka noise)
|
|
fftCalc[15] = wc * fftAddAvg(165,215) * 0.70f; // 50 7106 - 9259 high -- with some damping
|
|
}
|
|
fftCalc[ 4] = wc * fftAddAvg(5,6); // 3 301 - 430 midrange
|
|
fftCalc[ 5] = wc * fftAddAvg(7,8); // 3 430 - 560 midrange
|
|
fftCalc[ 6] = wc * fftAddAvg(9,10); // 5 560 - 818 midrange
|
|
fftCalc[ 7] = wc * fftAddAvg(11,13); // 7 818 - 1120 midrange -- 1Khz should always be the center !
|
|
fftCalc[ 8] = wc * fftAddAvg(14,18); // 7 1120 - 1421 midrange
|
|
fftCalc[ 9] = wc * fftAddAvg(19,25); // 9 1421 - 1895 midrange
|
|
fftCalc[10] = wc * fftAddAvg(26,36); // 12 1895 - 2412 midrange + high mid
|
|
fftCalc[11] = wc * fftAddAvg(37,45); // 14 2412 - 3015 high mid
|
|
fftCalc[12] = wc * fftAddAvg(46,66); // 16 3015 - 3704 high mid
|
|
fftCalc[13] = wc * fftAddAvg(67,97); // 18 3704 - 4479 high mid
|
|
fftCalc[14] = wc * fftAddAvg(98,164) * 0.88f; // 61 4479 - 7106 high mid + high -- with slight damping
|
|
}
|
|
} else { // noise gate closed - just decay old values
|
|
isFirstRun = false;
|
|
for (int i=0; i < NUM_GEQ_CHANNELS; i++) {
|
|
fftCalc[i] *= 0.85f; // decay to zero
|
|
if (fftCalc[i] < 4.0f) fftCalc[i] = 0.0f;
|
|
} }
|
|
|
|
memcpy(lastFftCalc, fftCalc, sizeof(lastFftCalc)); // make a backup of last "good" channels
|
|
|
|
} else { // if second run skipped
|
|
memcpy(fftCalc, lastFftCalc, sizeof(fftCalc)); // restore last "good" channels
|
|
}
|
|
|
|
// post-processing of frequency channels (pink noise adjustment, AGC, smoothing, scaling)
|
|
if (pinkIndex > MAX_PINK) pinkIndex = MAX_PINK;
|
|
|
|
#ifdef FFT_USE_SLIDING_WINDOW
|
|
postProcessFFTResults((fabsf(volumeSmth) > 0.25f)? true : false, NUM_GEQ_CHANNELS, usingOldSamples); // this function modifies fftCalc, fftAvg and fftResult
|
|
#else
|
|
postProcessFFTResults((fabsf(volumeSmth) > 0.25f)? true : false, NUM_GEQ_CHANNELS, false); // this function modifies fftCalc, fftAvg and fftResult
|
|
#endif
|
|
|
|
#if defined(WLED_DEBUG) || defined(SR_DEBUG)|| defined(SR_STATS)
|
|
// timing
|
|
static uint64_t lastLastFFT = 0;
|
|
if (haveDoneFFT && (start < esp_timer_get_time())) { // filter out overflows
|
|
uint64_t fftTimeInMillis = ((esp_timer_get_time() - start) +5ULL) / 10ULL; // "+5" to ensure proper rounding
|
|
fftTime = (((fftTimeInMillis + lastLastFFT)/2) *3 + fftTime*7)/10.0; // smart smooth
|
|
lastLastFFT = fftTimeInMillis;
|
|
}
|
|
#endif
|
|
|
|
// run peak detection
|
|
autoResetPeak();
|
|
detectSamplePeak();
|
|
|
|
haveNewFFTResult = true;
|
|
|
|
#if !defined(I2S_GRAB_ADC1_COMPLETELY)
|
|
if ((audioSource == nullptr) || (audioSource->getType() != AudioSource::Type_I2SAdc)) // the "delay trick" does not help for analog ADC
|
|
#endif
|
|
{
|
|
#ifdef FFT_USE_SLIDING_WINDOW
|
|
if (!usingOldSamples) {
|
|
vTaskDelayUntil( &xLastWakeTime, xFrequencyDouble); // we need a double wait when no old data was used
|
|
} else
|
|
#endif
|
|
if ((skipSecondFFT == false) || (fabsf(volumeSmth) < 0.25f)) {
|
|
vTaskDelayUntil( &xLastWakeTime, xFrequency); // release CPU, and let I2S fill its buffers
|
|
} else if (isFirstRun == true) {
|
|
vTaskDelayUntil( &xLastWakeTime, xFrequencyDouble); // release CPU after performing FFT in "skip second run" mode
|
|
}
|
|
}
|
|
} // for(;;)ever
|
|
} // FFTcode() task end
|
|
|
|
|
|
///////////////////////////
|
|
// Pre / Postprocessing //
|
|
///////////////////////////
|
|
|
|
static void runMicFilter(uint16_t numSamples, float *sampleBuffer) // pre-filtering of raw samples (band-pass)
|
|
{
|
|
// low frequency cutoff parameter - see https://dsp.stackexchange.com/questions/40462/exponential-moving-average-cut-off-frequency
|
|
//constexpr float alpha = 0.04f; // 150Hz
|
|
//constexpr float alpha = 0.03f; // 110Hz
|
|
constexpr float alpha = 0.0225f; // 80hz
|
|
//constexpr float alpha = 0.01693f;// 60hz
|
|
// high frequency cutoff parameter
|
|
//constexpr float beta1 = 0.75f; // 11Khz
|
|
//constexpr float beta1 = 0.82f; // 15Khz
|
|
//constexpr float beta1 = 0.8285f; // 18Khz
|
|
constexpr float beta1 = 0.85f; // 20Khz
|
|
|
|
constexpr float beta2 = (1.0f - beta1) / 2.0;
|
|
static float last_vals[2] = { 0.0f }; // FIR high freq cutoff filter
|
|
static float lowfilt = 0.0f; // IIR low frequency cutoff filter
|
|
|
|
for (int i=0; i < numSamples; i++) {
|
|
// FIR lowpass, to remove high frequency noise
|
|
float highFilteredSample;
|
|
if (i < (numSamples-1)) highFilteredSample = beta1*sampleBuffer[i] + beta2*last_vals[0] + beta2*sampleBuffer[i+1]; // smooth out spikes
|
|
else highFilteredSample = beta1*sampleBuffer[i] + beta2*last_vals[0] + beta2*last_vals[1]; // special handling for last sample in array
|
|
last_vals[1] = last_vals[0];
|
|
last_vals[0] = sampleBuffer[i];
|
|
sampleBuffer[i] = highFilteredSample;
|
|
// IIR highpass, to remove low frequency noise
|
|
lowfilt += alpha * (sampleBuffer[i] - lowfilt);
|
|
sampleBuffer[i] = sampleBuffer[i] - lowfilt;
|
|
}
|
|
}
|
|
|
|
static void postProcessFFTResults(bool noiseGateOpen, int numberOfChannels, bool i2sFastpath) // post-processing and post-amp of GEQ channels
|
|
{
|
|
for (int i=0; i < numberOfChannels; i++) {
|
|
|
|
if (noiseGateOpen) { // noise gate open
|
|
// Adjustment for frequency curves.
|
|
fftCalc[i] *= fftResultPink[pinkIndex][i];
|
|
if (FFTScalingMode > 0) fftCalc[i] *= FFT_DOWNSCALE; // adjustment related to FFT windowing function
|
|
// Manual linear adjustment of gain using sampleGain adjustment for different input types.
|
|
fftCalc[i] *= soundAgc ? multAgc : ((float)sampleGain/40.0f * (float)inputLevel/128.0f + 1.0f/16.0f); //apply gain, with inputLevel adjustment
|
|
if(fftCalc[i] < 0) fftCalc[i] = 0;
|
|
}
|
|
|
|
float speed = 1.0f; // filter correction for sampling speed -> 1.0 in normal mode (43hz)
|
|
if (i2sFastpath) speed = 0.6931471805599453094f * 1.1f; // -> ln(2) from math, *1.1 from my gut feeling ;-) in fast mode (86hz)
|
|
|
|
if(limiterOn == true) {
|
|
// Limiter ON -> smooth results
|
|
if(fftCalc[i] > fftAvg[i]) { // rise fast
|
|
fftAvg[i] += speed * 0.78f * (fftCalc[i] - fftAvg[i]); // will need approx 1-2 cycles (50ms) for converging against fftCalc[i]
|
|
} else { // fall slow
|
|
if (decayTime < 150) fftAvg[i] += speed * 0.50f * (fftCalc[i] - fftAvg[i]);
|
|
else if (decayTime < 250) fftAvg[i] += speed * 0.40f * (fftCalc[i] - fftAvg[i]);
|
|
else if (decayTime < 500) fftAvg[i] += speed * 0.33f * (fftCalc[i] - fftAvg[i]);
|
|
else if (decayTime < 1000) fftAvg[i] += speed * 0.22f * (fftCalc[i] - fftAvg[i]); // approx 5 cycles (225ms) for falling to zero
|
|
else if (decayTime < 2000) fftAvg[i] += speed * 0.17f * (fftCalc[i] - fftAvg[i]); // default - approx 9 cycles (225ms) for falling to zero
|
|
else if (decayTime < 3000) fftAvg[i] += speed * 0.14f * (fftCalc[i] - fftAvg[i]); // approx 14 cycles (350ms) for falling to zero
|
|
else if (decayTime < 4000) fftAvg[i] += speed * 0.10f * (fftCalc[i] - fftAvg[i]);
|
|
else fftAvg[i] += speed * 0.05f * (fftCalc[i] - fftAvg[i]);
|
|
}
|
|
} else {
|
|
// Limiter OFF
|
|
if (i2sFastpath) {
|
|
// fast mode -> average last two results
|
|
float tmp = fftCalc[i];
|
|
fftCalc[i] = 0.7f * tmp + 0.3f * fftAvg[i];
|
|
fftAvg[i] = tmp; // store current sample for next run
|
|
} else {
|
|
// normal mode -> no adjustments
|
|
fftAvg[i] = fftCalc[i]; // keep filters up-to-date
|
|
}
|
|
}
|
|
|
|
// constrain internal vars - just to be sure
|
|
fftCalc[i] = constrain(fftCalc[i], 0.0f, 1023.0f);
|
|
fftAvg[i] = constrain(fftAvg[i], 0.0f, 1023.0f);
|
|
|
|
float currentResult = limiterOn ? fftAvg[i] : fftCalc[i]; // continue with filtered result (limiter on) or unfiltered result (limiter off)
|
|
|
|
switch (FFTScalingMode) {
|
|
case 1:
|
|
// Logarithmic scaling
|
|
currentResult *= 0.42; // 42 is the answer ;-)
|
|
currentResult -= 8.0; // this skips the lowest row, giving some room for peaks
|
|
if (currentResult > 1.0) currentResult = logf(currentResult); // log to base "e", which is the fastest log() function
|
|
else currentResult = 0.0; // special handling, because log(1) = 0; log(0) = undefined
|
|
currentResult *= 0.85f + (float(i)/18.0f); // extra up-scaling for high frequencies
|
|
currentResult = mapf(currentResult, 0, LOG_256, 0, 255); // map [log(1) ... log(255)] to [0 ... 255]
|
|
break;
|
|
case 2:
|
|
// Linear scaling
|
|
currentResult *= 0.30f; // needs a bit more damping, get stay below 255
|
|
currentResult -= 2.0; // giving a bit more room for peaks
|
|
if (currentResult < 1.0f) currentResult = 0.0f;
|
|
currentResult *= 0.85f + (float(i)/1.8f); // extra up-scaling for high frequencies
|
|
break;
|
|
case 3:
|
|
// square root scaling
|
|
currentResult *= 0.38f;
|
|
//currentResult *= 0.34f; //experiment
|
|
currentResult -= 6.0f;
|
|
if (currentResult > 1.0) currentResult = sqrtf(currentResult);
|
|
else currentResult = 0.0; // special handling, because sqrt(0) = undefined
|
|
currentResult *= 0.85f + (float(i)/4.5f); // extra up-scaling for high frequencies
|
|
//currentResult *= 0.80f + (float(i)/5.6f); //experiment
|
|
currentResult = mapf(currentResult, 0.0, 16.0, 0.0, 255.0); // map [sqrt(1) ... sqrt(256)] to [0 ... 255]
|
|
break;
|
|
|
|
case 0:
|
|
default:
|
|
// no scaling - leave freq bins as-is
|
|
currentResult -= 2; // just a bit more room for peaks
|
|
break;
|
|
}
|
|
|
|
// Now, let's dump it all into fftResult. Need to do this, otherwise other routines might grab fftResult values prematurely.
|
|
if (soundAgc > 0) { // apply extra "GEQ Gain" if set by user
|
|
float post_gain = (float)inputLevel/128.0f;
|
|
if (post_gain < 1.0f) post_gain = ((post_gain -1.0f) * 0.8f) +1.0f;
|
|
currentResult *= post_gain;
|
|
}
|
|
fftResult[i] = max(min((int)(currentResult+0.5f), 255), 0); // +0.5 for proper rounding
|
|
}
|
|
}
|
|
////////////////////
|
|
// Peak detection //
|
|
////////////////////
|
|
|
|
// peak detection is called from FFT task when vReal[] contains valid FFT results
|
|
static void detectSamplePeak(void) {
|
|
bool havePeak = false;
|
|
#if 1
|
|
// softhack007: this code continuously triggers while volume in the selected bin is above a certain threshold. So it does not detect peaks - it detects volume in a frequency bin.
|
|
// Poor man's beat detection by seeing if sample > Average + some value.
|
|
// This goes through ALL of the 255 bins - but ignores stupid settings
|
|
// Then we got a peak, else we don't. The peak has to time out on its own in order to support UDP sound sync.
|
|
if ((sampleAvg > 1) && (maxVol > 0) && (binNum > 4) && (vReal[binNum] > maxVol) && ((millis() - timeOfPeak) > 100)) {
|
|
havePeak = true;
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
// alternate detection, based on FFT_MajorPeak and FFT_Magnitude. Not much better...
|
|
if ((binNum > 1) && (maxVol > 8) && (binNum < 10) && (sampleAgc > 127) &&
|
|
(FFT_MajorPeak > 50) && (FFT_MajorPeak < 250) && (FFT_Magnitude > (16.0f * (maxVol+42.0)) /*my_magnitude > 136.0f*16.0f*/) &&
|
|
(millis() - timeOfPeak > 80)) {
|
|
havePeak = true;
|
|
}
|
|
#endif
|
|
|
|
if (havePeak) {
|
|
samplePeak = true;
|
|
timeOfPeak = millis();
|
|
udpSamplePeak = true;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
static void autoResetPeak(void) {
|
|
uint16_t MinShowDelay = MAX(50, strip.getMinShowDelay()); // Fixes private class variable compiler error. Unsure if this is the correct way of fixing the root problem. -THATDONFC
|
|
if (millis() - timeOfPeak > MinShowDelay) { // Auto-reset of samplePeak after a complete frame has passed.
|
|
samplePeak = false;
|
|
if (audioSyncEnabled == AUDIOSYNC_NONE) udpSamplePeak = false; // this is normally reset by transmitAudioData
|
|
}
|
|
}
|
|
|
|
////////////////////
|
|
// usermod class //
|
|
////////////////////
|
|
|
|
//class name. Use something descriptive and leave the ": public Usermod" part :)
|
|
class AudioReactive : public Usermod {
|
|
|
|
private:
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
|
|
// HUB75 workaround - audio receive only
|
|
#ifdef WLED_ENABLE_HUB75MATRIX
|
|
#undef SR_DMTYPE
|
|
#define SR_DMTYPE 254 // "network receive only"
|
|
#endif
|
|
#ifndef AUDIOPIN
|
|
int8_t audioPin = -1;
|
|
#else
|
|
int8_t audioPin = AUDIOPIN;
|
|
#endif
|
|
#ifndef SR_DMTYPE // I2S mic type
|
|
uint8_t dmType = 1; // 0=none/disabled/analog; 1=generic I2S
|
|
#define SR_DMTYPE 1 // default type = I2S
|
|
#else
|
|
uint8_t dmType = SR_DMTYPE;
|
|
#endif
|
|
#ifndef I2S_SDPIN // aka DOUT
|
|
int8_t i2ssdPin = 32;
|
|
#else
|
|
int8_t i2ssdPin = I2S_SDPIN;
|
|
#endif
|
|
#ifndef I2S_WSPIN // aka LRCL
|
|
int8_t i2swsPin = 15;
|
|
#else
|
|
int8_t i2swsPin = I2S_WSPIN;
|
|
#endif
|
|
#ifndef I2S_CKPIN // aka BCLK
|
|
int8_t i2sckPin = 14; /*PDM: set to I2S_PIN_NO_CHANGE*/
|
|
#else
|
|
int8_t i2sckPin = I2S_CKPIN;
|
|
#endif
|
|
#ifndef ES7243_SDAPIN
|
|
int8_t sdaPin = -1;
|
|
#else
|
|
int8_t sdaPin = ES7243_SDAPIN;
|
|
#endif
|
|
#ifndef ES7243_SCLPIN
|
|
int8_t sclPin = -1;
|
|
#else
|
|
int8_t sclPin = ES7243_SCLPIN;
|
|
#endif
|
|
#ifndef MCLK_PIN
|
|
int8_t mclkPin = I2S_PIN_NO_CHANGE; /* ESP32: only -1, 0, 1, 3 allowed*/
|
|
#else
|
|
int8_t mclkPin = MCLK_PIN;
|
|
#endif
|
|
#endif
|
|
// new "V2" audiosync struct - 44 Bytes
|
|
struct __attribute__ ((packed)) audioSyncPacket { // WLEDMM "packed" ensures that there are no additional gaps
|
|
char header[6]; // 06 Bytes offset 0 - "00002" for protocol version 2 ( includes \0 for c-style string termination)
|
|
uint8_t pressure[2]; // 02 Bytes, offset 6 - sound pressure as fixed point (8bit integer, 8bit fraction)
|
|
float sampleRaw; // 04 Bytes offset 8 - either "sampleRaw" or "rawSampleAgc" depending on soundAgc setting
|
|
float sampleSmth; // 04 Bytes offset 12 - either "sampleAvg" or "sampleAgc" depending on soundAgc setting
|
|
uint8_t samplePeak; // 01 Bytes offset 16 - 0 no peak; >=1 peak detected. In future, this will also provide peak Magnitude
|
|
uint8_t frameCounter; // 01 Bytes offset 17 - rolling counter to track duplicate/out of order packets
|
|
uint8_t fftResult[16]; // 16 Bytes offset 18 - 16 GEQ channels, each channel has one byte (uint8_t)
|
|
uint16_t zeroCrossingCount; // 02 Bytes, offset 34 - number of zero crossings seen in 23ms
|
|
float FFT_Magnitude; // 04 Bytes offset 36 - largest FFT result from a single run (raw value, can go up to 4096)
|
|
float FFT_MajorPeak; // 04 Bytes offset 40 - frequency (Hz) of largest FFT result
|
|
};
|
|
|
|
// old "V1" audiosync struct - 83 Bytes payload, 88 bytes total - for backwards compatibility
|
|
struct audioSyncPacket_v1 {
|
|
char header[6]; // 06 Bytes
|
|
uint8_t myVals[32]; // 32 Bytes
|
|
int32_t sampleAgc; // 04 Bytes
|
|
int32_t sampleRaw; // 04 Bytes
|
|
float sampleAvg; // 04 Bytes
|
|
bool samplePeak; // 01 Bytes
|
|
uint8_t fftResult[16]; // 16 Bytes
|
|
double FFT_Magnitude; // 08 Bytes
|
|
double FFT_MajorPeak; // 08 Bytes
|
|
};
|
|
|
|
#define UDPSOUND_MAX_PACKET 96 // max packet size for audiosync, with a bit of "headroom"
|
|
|
|
// set your config variables to their boot default value (this can also be done in readFromConfig() or a constructor if you prefer)
|
|
#if defined(SR_ENABLE_DEFAULT) || defined(UM_AUDIOREACTIVE_ENABLE)
|
|
bool enabled = true; // WLEDMM
|
|
#else
|
|
bool enabled = false;
|
|
#endif
|
|
bool initDone = false;
|
|
|
|
// variables for UDP sound sync
|
|
WiFiUDP fftUdp; // UDP object for sound sync (from WiFi UDP, not Async UDP!)
|
|
unsigned long lastTime = 0; // last time of running UDP Microphone Sync
|
|
#if defined(WLEDMM_FASTPATH)
|
|
const uint16_t delayMs = 5; // I don't want to sample too often and overload WLED
|
|
#else
|
|
const uint16_t delayMs = 10; // I don't want to sample too often and overload WLED
|
|
#endif
|
|
uint16_t audioSyncPort= 11988;// default port for UDP sound sync
|
|
|
|
bool updateIsRunning = false; // true during OTA.
|
|
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
// used for AGC
|
|
int last_soundAgc = -1; // used to detect AGC mode change (for resetting AGC internal error buffers)
|
|
double control_integrated = 0.0; // persistent across calls to agcAvg(); "integrator control" = accumulated error
|
|
|
|
// variables used by getSample() and agcAvg()
|
|
double sampleMax = 0.0; // Max sample over a few seconds. Needed for AGC controller.
|
|
double micLev = 0.0; // Used to convert returned value to have '0' as minimum. A leveller
|
|
float expAdjF = 0.0f; // Used for exponential filter.
|
|
float sampleReal = 0.0f; // "sampleRaw" as float, to provide bits that are lost otherwise (before amplification by sampleGain or inputLevel). Needed for AGC.
|
|
int16_t sampleRaw = 0; // Current sample. Must only be updated ONCE!!! (amplified mic value by sampleGain and inputLevel)
|
|
int16_t rawSampleAgc = 0; // not smoothed AGC sample
|
|
#endif
|
|
|
|
// variables used in effects
|
|
int16_t volumeRaw = 0; // either sampleRaw or rawSampleAgc depending on soundAgc
|
|
float my_magnitude =0.0f; // FFT_Magnitude, scaled by multAgc
|
|
float soundPressure = 0; // Sound Pressure estimation, based on microphone raw readings. 0 ->5db, 255 ->105db
|
|
|
|
// used to feed "Info" Page
|
|
unsigned long last_UDPTime = 0; // time of last valid UDP sound sync datapacket
|
|
int receivedFormat = 0; // last received UDP sound sync format - 0=none, 1=v1 (0.13.x), 2=v2 (0.14.x)
|
|
float maxSample5sec = 0.0f; // max sample (after AGC) in last 5 seconds
|
|
unsigned long sampleMaxTimer = 0; // last time maxSample5sec was reset
|
|
#define CYCLE_SAMPLEMAX 3500 // time window for merasuring
|
|
|
|
// strings to reduce flash memory usage (used more than twice)
|
|
static const char _name[];
|
|
static const char _enabled[];
|
|
static const char _inputLvl[];
|
|
#if defined(ARDUINO_ARCH_ESP32) && !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(CONFIG_IDF_TARGET_ESP32S3)
|
|
static const char _analogmic[];
|
|
#endif
|
|
static const char _digitalmic[];
|
|
static const char UDP_SYNC_HEADER[];
|
|
static const char UDP_SYNC_HEADER_v1[];
|
|
|
|
// private methods
|
|
|
|
////////////////////
|
|
// Debug support //
|
|
////////////////////
|
|
void logAudio()
|
|
{
|
|
if (disableSoundProcessing && (!udpSyncConnected || ((audioSyncEnabled & AUDIOSYNC_REC) == 0))) return; // no audio available
|
|
#ifdef MIC_LOGGER
|
|
// Debugging functions for audio input and sound processing. Comment out the values you want to see
|
|
PLOT_PRINT("volumeSmth:"); PLOT_PRINT(volumeSmth + 256.0f); PLOT_PRINT("\t"); // +256 to move above other lines
|
|
//PLOT_PRINT("volumeRaw:"); PLOT_PRINT(volumeRaw + 256.0f); PLOT_PRINT("\t"); // +256 to move above other lines
|
|
//PLOT_PRINT("samplePeak:"); PLOT_PRINT((samplePeak!=0) ? 128:0); PLOT_PRINT("\t");
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
PLOT_PRINT("micMin:"); PLOT_PRINT(0.5f * micReal_min); PLOT_PRINT("\t"); // scaled down to 50%, for better readability
|
|
PLOT_PRINT("micMax:"); PLOT_PRINT(0.5f * micReal_max); PLOT_PRINT("\t"); // scaled down to 50%
|
|
//PLOT_PRINT("micAvg:"); PLOT_PRINT(0.5f * micReal_avg); PLOT_PRINT("\t"); // scaled down to 50%
|
|
//PLOT_PRINT("micDC:"); PLOT_PRINT(0.5f * (micReal_min + micReal_max)/2.0f);PLOT_PRINT("\t"); // scaled down to 50%
|
|
PLOT_PRINT("micReal:"); PLOT_PRINT(micDataReal + 256.0f); PLOT_PRINT("\t"); // +256 to move above other lines
|
|
PLOT_PRINT("DC_Level:"); PLOT_PRINT(micLev + 256.0f); PLOT_PRINT("\t"); // +256 to move above other lines
|
|
// //PLOT_PRINT("filtmicMin:"); PLOT_PRINT(0.5f * micReal_min2); PLOT_PRINT("\t"); // scaled down to 50%
|
|
// //PLOT_PRINT("filtmicMax:"); PLOT_PRINT(0.5f * micReal_max2); PLOT_PRINT("\t"); // scaled down to 50%
|
|
//PLOT_PRINT("sampleAgc:"); PLOT_PRINT(sampleAgc); PLOT_PRINT("\t");
|
|
//PLOT_PRINT("sampleAvg:"); PLOT_PRINT(sampleAvg); PLOT_PRINT("\t");
|
|
//PLOT_PRINT("sampleReal:"); PLOT_PRINT(sampleReal); PLOT_PRINT("\t");
|
|
//PLOT_PRINT("sample:"); PLOT_PRINT(sample); PLOT_PRINT("\t");
|
|
//PLOT_PRINT("sampleMax:"); PLOT_PRINT(sampleMax); PLOT_PRINT("\t");
|
|
//PLOT_PRINT("multAgc:"); PLOT_PRINT(multAgc, 4); PLOT_PRINT("\t");
|
|
#endif
|
|
PLOT_PRINTLN();
|
|
PLOT_FLUSH();
|
|
#endif
|
|
|
|
#ifdef FFT_SAMPLING_LOG
|
|
#if 0
|
|
for(int i=0; i<NUM_GEQ_CHANNELS; i++) {
|
|
PLOT_PRINT(fftResult[i]);
|
|
PLOT_PRINT("\t");
|
|
}
|
|
PLOT_PRINTLN();
|
|
#endif
|
|
|
|
// OPTIONS are in the following format: Description \n Option
|
|
//
|
|
// Set true if wanting to see all the bands in their own vertical space on the Serial Plotter, false if wanting to see values in Serial Monitor
|
|
const bool mapValuesToPlotterSpace = false;
|
|
// Set true to apply an auto-gain like setting to to the data (this hasn't been tested recently)
|
|
const bool scaleValuesFromCurrentMaxVal = false;
|
|
// prints the max value seen in the current data
|
|
const bool printMaxVal = false;
|
|
// prints the min value seen in the current data
|
|
const bool printMinVal = false;
|
|
// if !scaleValuesFromCurrentMaxVal, we scale values from [0..defaultScalingFromHighValue] to [0..scalingToHighValue], lower this if you want to see smaller values easier
|
|
const int defaultScalingFromHighValue = 256;
|
|
// Print values to terminal in range of [0..scalingToHighValue] if !mapValuesToPlotterSpace, or [(i)*scalingToHighValue..(i+1)*scalingToHighValue] if mapValuesToPlotterSpace
|
|
const int scalingToHighValue = 256;
|
|
// set higher if using scaleValuesFromCurrentMaxVal and you want a small value that's also the current maxVal to look small on the plotter (can't be 0 to avoid divide by zero error)
|
|
const int minimumMaxVal = 1;
|
|
|
|
int maxVal = minimumMaxVal;
|
|
int minVal = 0;
|
|
for(int i = 0; i < NUM_GEQ_CHANNELS; i++) {
|
|
if(fftResult[i] > maxVal) maxVal = fftResult[i];
|
|
if(fftResult[i] < minVal) minVal = fftResult[i];
|
|
}
|
|
for(int i = 0; i < NUM_GEQ_CHANNELS; i++) {
|
|
PLOT_PRINT(i); PLOT_PRINT(":");
|
|
PLOT_PRINTF("%04ld ", map(fftResult[i], 0, (scaleValuesFromCurrentMaxVal ? maxVal : defaultScalingFromHighValue), (mapValuesToPlotterSpace*i*scalingToHighValue)+0, (mapValuesToPlotterSpace*i*scalingToHighValue)+scalingToHighValue-1));
|
|
}
|
|
if(printMaxVal) {
|
|
PLOT_PRINTF("maxVal:%04d ", maxVal + (mapValuesToPlotterSpace ? 16*256 : 0));
|
|
}
|
|
if(printMinVal) {
|
|
PLOT_PRINTF("%04d:minVal ", minVal); // printed with value first, then label, so negative values can be seen in Serial Monitor but don't throw off y axis in Serial Plotter
|
|
}
|
|
if(mapValuesToPlotterSpace)
|
|
PLOT_PRINTF("max:%04d ", (printMaxVal ? 17 : 16)*256); // print line above the maximum value we expect to see on the plotter to avoid autoscaling y axis
|
|
else {
|
|
PLOT_PRINTF("max:%04d ", 256);
|
|
}
|
|
PLOT_PRINTLN();
|
|
#endif // FFT_SAMPLING_LOG
|
|
} // logAudio()
|
|
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
|
|
//////////////////////
|
|
// Audio Processing //
|
|
//////////////////////
|
|
|
|
/*
|
|
* A "PI controller" multiplier to automatically adjust sound sensitivity.
|
|
*
|
|
* A few tricks are implemented so that sampleAgc does't only utilize 0% and 100%:
|
|
* 0. don't amplify anything below squelch (but keep previous gain)
|
|
* 1. gain input = maximum signal observed in the last 5-10 seconds
|
|
* 2. we use two setpoints, one at ~60%, and one at ~80% of the maximum signal
|
|
* 3. the amplification depends on signal level:
|
|
* a) normal zone - very slow adjustment
|
|
* b) emergency zone (<10% or >90%) - very fast adjustment
|
|
*/
|
|
void agcAvg(unsigned long the_time)
|
|
{
|
|
const int AGC_preset = (soundAgc > 0)? (soundAgc-1): 0; // make sure the _compiler_ knows this value will not change while we are inside the function
|
|
|
|
float lastMultAgc = multAgc; // last multiplier used
|
|
float multAgcTemp = multAgc; // new multiplier
|
|
float tmpAgc = sampleReal * multAgc; // what-if amplified signal
|
|
|
|
float control_error; // "control error" input for PI control
|
|
|
|
if (last_soundAgc != soundAgc)
|
|
control_integrated = 0.0; // new preset - reset integrator
|
|
|
|
// For PI controller, we need to have a constant "frequency"
|
|
// so let's make sure that the control loop is not running at insane speed
|
|
static unsigned long last_time = 0;
|
|
unsigned long time_now = millis();
|
|
if ((the_time > 0) && (the_time < time_now)) time_now = the_time; // allow caller to override my clock
|
|
|
|
if (time_now - last_time > 2) {
|
|
last_time = time_now;
|
|
|
|
if((fabsf(sampleReal) < 2.0f) || (sampleMax < 1.0f)) {
|
|
// MIC signal is "squelched" - deliver silence
|
|
tmpAgc = 0;
|
|
// we need to "spin down" the intgrated error buffer
|
|
if (fabs(control_integrated) < 0.01) control_integrated = 0.0;
|
|
else control_integrated *= 0.91;
|
|
} else {
|
|
// compute new setpoint
|
|
if (tmpAgc <= agcTarget0Up[AGC_preset])
|
|
multAgcTemp = agcTarget0[AGC_preset] / sampleMax; // Make the multiplier so that sampleMax * multiplier = first setpoint
|
|
else
|
|
multAgcTemp = agcTarget1[AGC_preset] / sampleMax; // Make the multiplier so that sampleMax * multiplier = second setpoint
|
|
}
|
|
// limit amplification
|
|
if (multAgcTemp > 32.0f) multAgcTemp = 32.0f;
|
|
if (multAgcTemp < 1.0f/64.0f) multAgcTemp = 1.0f/64.0f;
|
|
|
|
// compute error terms
|
|
control_error = multAgcTemp - lastMultAgc;
|
|
|
|
if (((multAgcTemp > 0.085f) && (multAgcTemp < 6.5f)) //integrator anti-windup by clamping
|
|
&& (multAgc*sampleMax < agcZoneStop[AGC_preset])) //integrator ceiling (>140% of max)
|
|
control_integrated += control_error * 0.002 * 0.25; // 2ms = integration time; 0.25 for damping
|
|
else
|
|
control_integrated *= 0.9; // spin down that integrator beast
|
|
|
|
// apply PI Control
|
|
tmpAgc = sampleReal * lastMultAgc; // check "zone" of the signal using previous gain
|
|
if ((tmpAgc > agcZoneHigh[AGC_preset]) || (tmpAgc < soundSquelch + agcZoneLow[AGC_preset])) { // upper/lower emergency zone
|
|
multAgcTemp = lastMultAgc + agcFollowFast[AGC_preset] * agcControlKp[AGC_preset] * control_error;
|
|
multAgcTemp += agcFollowFast[AGC_preset] * agcControlKi[AGC_preset] * control_integrated;
|
|
} else { // "normal zone"
|
|
multAgcTemp = lastMultAgc + agcFollowSlow[AGC_preset] * agcControlKp[AGC_preset] * control_error;
|
|
multAgcTemp += agcFollowSlow[AGC_preset] * agcControlKi[AGC_preset] * control_integrated;
|
|
}
|
|
|
|
// limit amplification again - PI controller sometimes "overshoots"
|
|
//multAgcTemp = constrain(multAgcTemp, 0.015625f, 32.0f); // 1/64 < multAgcTemp < 32
|
|
if (multAgcTemp > 32.0f) multAgcTemp = 32.0f;
|
|
if (multAgcTemp < 1.0f/64.0f) multAgcTemp = 1.0f/64.0f;
|
|
}
|
|
|
|
// NOW finally amplify the signal
|
|
tmpAgc = sampleReal * multAgcTemp; // apply gain to signal
|
|
if (fabsf(sampleReal) < 2.0f) tmpAgc = 0.0f; // apply squelch threshold
|
|
//tmpAgc = constrain(tmpAgc, 0, 255);
|
|
if (tmpAgc > 255) tmpAgc = 255.0f; // limit to 8bit
|
|
if (tmpAgc < 1) tmpAgc = 0.0f; // just to be sure
|
|
|
|
// update global vars ONCE - multAgc, sampleAGC, rawSampleAgc
|
|
multAgc = multAgcTemp;
|
|
if (micQuality > 0) {
|
|
if (micQuality > 1) {
|
|
rawSampleAgc = 0.95f * tmpAgc + 0.05f * (float)rawSampleAgc; // raw path
|
|
sampleAgc += 0.95f * (tmpAgc - sampleAgc); // smooth path
|
|
} else {
|
|
rawSampleAgc = 0.70f * tmpAgc + 0.30f * (float)rawSampleAgc; // min filtering path
|
|
sampleAgc += 0.70f * (tmpAgc - sampleAgc);
|
|
}
|
|
} else {
|
|
#if defined(WLEDMM_FASTPATH)
|
|
rawSampleAgc = 0.65f * tmpAgc + 0.35f * (float)rawSampleAgc;
|
|
#else
|
|
rawSampleAgc = 0.8f * tmpAgc + 0.2f * (float)rawSampleAgc;
|
|
#endif
|
|
// update smoothed AGC sample
|
|
if (fabsf(tmpAgc) < 1.0f)
|
|
sampleAgc = 0.5f * tmpAgc + 0.5f * sampleAgc; // fast path to zero
|
|
else
|
|
sampleAgc += agcSampleSmooth[AGC_preset] * (tmpAgc - sampleAgc); // smooth path
|
|
}
|
|
sampleAgc = fabsf(sampleAgc); // // make sure we have a positive value
|
|
last_soundAgc = soundAgc;
|
|
} // agcAvg()
|
|
|
|
// post-processing and filtering of MIC sample (micDataReal) from FFTcode()
|
|
void getSample()
|
|
{
|
|
float sampleAdj; // Gain adjusted sample value
|
|
float tmpSample; // An interim sample variable used for calculations.
|
|
const float weighting = 0.18f; // Exponential filter weighting. Will be adjustable in a future release.
|
|
const float weighting2 = 0.073f; // Exponential filter weighting, for rising signal (a bit more robust against spikes)
|
|
const int AGC_preset = (soundAgc > 0)? (soundAgc-1): 0; // make sure the _compiler_ knows this value will not change while we are inside the function
|
|
static bool isFrozen = false;
|
|
static bool haveSilence = true;
|
|
static unsigned long lastSoundTime = 0; // for delaying un-freeze
|
|
static unsigned long startuptime = 0; // "fast freeze" mode: do not interfere during first 12 seconds (filter startup time)
|
|
|
|
if (startuptime == 0) startuptime = millis(); // fast freeze mode - remember filter startup time
|
|
if ((micLevelMethod < 1) || !isFrozen) { // following the input level, UNLESS mic Level was frozen
|
|
micLev += (micDataReal-micLev) / 12288.0f;
|
|
}
|
|
|
|
if(micDataReal < (micLev-0.24)) { // MicLev above input signal:
|
|
micLev = ((micLev * 31.0f) + micDataReal) / 32.0f; // always align MicLev to lowest input signal
|
|
if (!haveSilence) isFrozen = true; // freeze mode: freeze micLevel so it cannot rise again
|
|
}
|
|
|
|
// Using an exponential filter to smooth out the signal. We'll add controls for this in a future release.
|
|
float micInNoDC = fabsf(micDataReal - micLev);
|
|
|
|
if ((micInNoDC > expAdjF) && (expAdjF > soundSquelch)) // MicIn rising, and above squelch threshold?
|
|
expAdjF = (weighting2 * micInNoDC + (1.0f-weighting2) * expAdjF); // rise slower
|
|
else
|
|
expAdjF = (weighting * micInNoDC + (1.0f-weighting) * expAdjF); // fall faster
|
|
|
|
expAdjF = fabsf(expAdjF); // Now (!) take the absolute value
|
|
|
|
if ((micLevelMethod == 2) && !haveSilence && (expAdjF >= (1.5f * float(soundSquelch))))
|
|
isFrozen = true; // fast freeze mode: freeze micLevel once the volume rises 50% above squelch
|
|
|
|
// simple noise gate
|
|
if ((expAdjF <= soundSquelch) || ((soundSquelch == 0) && (expAdjF < 0.25f))) {
|
|
expAdjF = 0.0f;
|
|
micInNoDC = 0.0f;
|
|
}
|
|
|
|
if (expAdjF <= 0.5f)
|
|
haveSilence = true;
|
|
else {
|
|
lastSoundTime = millis();
|
|
haveSilence = false;
|
|
}
|
|
|
|
// un-freeze micLev
|
|
if (micLevelMethod == 0) isFrozen = false;
|
|
if ((micLevelMethod == 1) && isFrozen && haveSilence && ((millis() - lastSoundTime) > 4000)) isFrozen = false; // normal freeze: 4 seconds silence needed
|
|
if ((micLevelMethod == 2) && isFrozen && haveSilence && ((millis() - lastSoundTime) > 6000)) isFrozen = false; // fast freeze: 6 seconds silence needed
|
|
if ((micLevelMethod == 2) && (millis() - startuptime < 12000)) isFrozen = false; // fast freeze: no freeze in first 12 seconds (filter startup phase)
|
|
|
|
tmpSample = expAdjF;
|
|
|
|
// Adjust the gain. with inputLevel adjustment.
|
|
if (micQuality > 0) {
|
|
sampleAdj = micInNoDC * sampleGain / 40.0f * inputLevel/128.0f + micInNoDC / 16.0f; // ... using unfiltered sample
|
|
sampleReal = micInNoDC;
|
|
} else {
|
|
sampleAdj = tmpSample * sampleGain / 40.0f * inputLevel/128.0f + tmpSample / 16.0f; // ... using pre-filtered sample
|
|
sampleReal = tmpSample;
|
|
}
|
|
|
|
sampleAdj = fmax(fmin(sampleAdj, 255.0f), 0.0f); // Question: why are we limiting the value to 8 bits ???
|
|
sampleRaw = (int16_t)sampleAdj; // ONLY update sample ONCE!!!!
|
|
|
|
// keep "peak" sample, but decay value if current sample is below peak
|
|
if ((sampleMax < sampleReal) && (sampleReal > 0.5f)) {
|
|
sampleMax = sampleMax + 0.5f * (sampleReal - sampleMax); // new peak - with some filtering
|
|
#if 1
|
|
// another simple way to detect samplePeak - cannot detect beats, but reacts on peak volume
|
|
if (((binNum < 12) || ((maxVol < 1))) && (millis() - timeOfPeak > 80) && (sampleAvg > 1)) {
|
|
samplePeak = true;
|
|
timeOfPeak = millis();
|
|
udpSamplePeak = true;
|
|
}
|
|
#endif
|
|
} else {
|
|
if ((multAgc*sampleMax > agcZoneStop[AGC_preset]) && (soundAgc > 0))
|
|
sampleMax += 0.5f * (sampleReal - sampleMax); // over AGC Zone - get back quickly
|
|
else
|
|
sampleMax *= agcSampleDecay[AGC_preset]; // signal to zero --> 5-8sec
|
|
}
|
|
if (sampleMax < 0.5f) sampleMax = 0.0f;
|
|
|
|
if (micQuality > 0) {
|
|
if (micQuality > 1) sampleAvg += 0.95f * (sampleAdj - sampleAvg);
|
|
else sampleAvg += 0.70f * (sampleAdj - sampleAvg);
|
|
} else {
|
|
#if defined(WLEDMM_FASTPATH)
|
|
sampleAvg = ((sampleAvg * 11.0f) + sampleAdj) / 12.0f; // make reactions a bit more "crisp" in fastpath mode
|
|
#else
|
|
sampleAvg = ((sampleAvg * 15.0f) + sampleAdj) / 16.0f; // Smooth it out over the last 16 samples.
|
|
#endif
|
|
}
|
|
sampleAvg = fabsf(sampleAvg); // make sure we have a positive value
|
|
} // getSample()
|
|
|
|
|
|
// current sensitivity, based on AGC gain (multAgc)
|
|
float getSensitivity()
|
|
{
|
|
// start with AGC gain factor
|
|
float tmpSound = multAgc;
|
|
// experimental: this gives you a calculated "real gain"
|
|
// if ((sampleAvg> 1.0) && (sampleReal > 0.05)) tmpSound = (float)sampleRaw / sampleReal; // calculate gain from sampleReal
|
|
// else tmpSound = ((float)sampleGain/40.0f * (float)inputLevel/128.0f) + 1.0f/16.0f; // silence --> use values from user settings
|
|
|
|
if (soundAgc == 0)
|
|
tmpSound = ((float)sampleGain/40.0f * (float)inputLevel/128.0f) + 1.0f/16.0f; // AGC off -> use non-AGC gain from presets
|
|
else
|
|
tmpSound /= (float)sampleGain/40.0f + 1.0f/16.0f; // AGC ON -> scale value so 1 = middle value
|
|
|
|
// scale to 0..255. Actually I'm not absolutely happy with this, but it works
|
|
if (tmpSound > 1.0) tmpSound = sqrtf(tmpSound);
|
|
if (tmpSound > 1.25) tmpSound = ((tmpSound-1.25f)/3.42f) +1.25f;
|
|
// we have a value now that should be between 0 and 4 (representing gain 1/16 ... 16.0)
|
|
return fminf(fmaxf(128.0*tmpSound -6.0f, 0), 255.0); // return scaled non-inverted value // "-6" to ignore values below 1/24
|
|
}
|
|
|
|
// estimate sound pressure, based on some assumptions :
|
|
// * sample max = 32676 -> Acoustic overload point --> 105db ==> 255
|
|
// * sample < squelch -> just above hearing level --> 5db ==> 0
|
|
// see https://en.wikipedia.org/wiki/Sound_pressure#Examples_of_sound_pressure
|
|
// use with I2S digital microphones. Expect stupid values for analog in, and with Line-In !!
|
|
float estimatePressure() {
|
|
// some constants
|
|
constexpr float logMinSample = 0.8329091229351f; // ln(2.3)
|
|
constexpr float sampleMin = 2.3f;
|
|
constexpr float logMaxSample = 10.1895683436f; // ln(32767 - 6144)
|
|
constexpr float sampleMax = 32767.0f - 6144.0f;
|
|
|
|
// take the max sample from last I2S batch.
|
|
float micSampleMax = fabsf(sampleReal); // from getSample() - nice results, however a bit distorted by MicLev processing
|
|
//float micSampleMax = fabsf(micDataReal); // from FFTCode() - better source, but more flickering
|
|
if (dmType == 0) micSampleMax *= 2.0f; // correction for ADC analog
|
|
//if (dmType == 4) micSampleMax *= 16.0f; // correction for I2S Line-In
|
|
if (dmType == 5) micSampleMax *= 2.0f; // correction for PDM
|
|
if (dmType == 4) { // I2S Line-In. This is a dirty trick to make sound pressure look interesting for line-in (which doesn't have "sound pressure" as its not a microphone)
|
|
micSampleMax /= 11.0f; // reduce to max 128
|
|
micSampleMax *= micSampleMax; // blow up --> max 16000
|
|
}
|
|
// make sure we are in expected ranges
|
|
if(micSampleMax <= sampleMin) return 0.0f;
|
|
if(micSampleMax >= sampleMax) return 255.0f;
|
|
|
|
// apply logarithmic scaling
|
|
float scaledvalue = logf(micSampleMax);
|
|
scaledvalue = (scaledvalue - logMinSample) / (logMaxSample - logMinSample); // 0...1
|
|
return fminf(fmaxf(256.0*scaledvalue, 0), 255.0); // scaled value
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Limits the dynamics of volumeSmth (= sampleAvg or sampleAgc).
|
|
* does not affect FFTResult[] or volumeRaw ( = sample or rawSampleAgc)
|
|
*/
|
|
// effects: Gravimeter, Gravcenter, Gravcentric, Noisefire, Plasmoid, Freqpixels, Freqwave, Gravfreq, (2D Swirl, 2D Waverly)
|
|
void limitSampleDynamics(void) {
|
|
const float bigChange = 196; // just a representative number - a large, expected sample value
|
|
static unsigned long last_time = 0;
|
|
static float last_volumeSmth = 0.0f;
|
|
|
|
if (limiterOn == false) return;
|
|
|
|
long delta_time = millis() - last_time;
|
|
delta_time = constrain(delta_time , 1, 1000); // below 1ms -> 1ms; above 1sec -> silly lil hick-up
|
|
float deltaSample = volumeSmth - last_volumeSmth;
|
|
|
|
if (attackTime > 0) { // user has defined attack time > 0
|
|
float maxAttack = bigChange * float(delta_time) / float(attackTime);
|
|
if (deltaSample > maxAttack) deltaSample = maxAttack;
|
|
}
|
|
if (decayTime > 0) { // user has defined decay time > 0
|
|
float maxDecay = - bigChange * float(delta_time) / float(decayTime);
|
|
if (deltaSample < maxDecay) deltaSample = maxDecay;
|
|
}
|
|
|
|
volumeSmth = last_volumeSmth + deltaSample;
|
|
|
|
last_volumeSmth = volumeSmth;
|
|
last_time = millis();
|
|
}
|
|
|
|
// MM experimental: limiter to smooth GEQ samples (only for UDP sound receiver mode)
|
|
// target value (if gotNewSample) : fftCalc
|
|
// last filtered value: fftAvg
|
|
void limitGEQDynamics(bool gotNewSample) {
|
|
constexpr float bigChange = 202; // just a representative number - a large, expected sample value
|
|
constexpr float smooth = 0.8f; // a bit of filtering
|
|
static unsigned long last_time = 0;
|
|
|
|
if (limiterOn == false) return;
|
|
|
|
if (gotNewSample) { // take new FFT samples as target values
|
|
for(unsigned i=0; i < NUM_GEQ_CHANNELS; i++) {
|
|
fftCalc[i] = fftResult[i];
|
|
fftResult[i] = fftAvg[i];
|
|
}
|
|
}
|
|
|
|
long delta_time = millis() - last_time;
|
|
delta_time = constrain(delta_time , 1, 1000); // below 1ms -> 1ms; above 1sec -> silly lil hick-up
|
|
float maxAttack = (attackTime <= 0) ? 255.0f : (bigChange * float(delta_time) / float(attackTime));
|
|
float maxDecay = (decayTime <= 0) ? -255.0f : (-bigChange * float(delta_time) / float(decayTime));
|
|
|
|
for(unsigned i=0; i < NUM_GEQ_CHANNELS; i++) {
|
|
float deltaSample = fftCalc[i] - fftAvg[i];
|
|
if (deltaSample > maxAttack) deltaSample = maxAttack;
|
|
if (deltaSample < maxDecay) deltaSample = maxDecay;
|
|
deltaSample = deltaSample * smooth;
|
|
fftAvg[i] = fmaxf(0.0f, fminf(255.0f, fftAvg[i] + deltaSample));
|
|
fftResult[i] = fftAvg[i];
|
|
}
|
|
last_time = millis();
|
|
}
|
|
|
|
//////////////////////
|
|
// UDP Sound Sync //
|
|
//////////////////////
|
|
|
|
// try to establish UDP sound sync connection
|
|
void connectUDPSoundSync(void) {
|
|
// This function tries to establish a UDP sync connection if needed
|
|
// necessary as we also want to transmit in "AP Mode", but the standard "connected()" callback only reacts on STA connection
|
|
static unsigned long last_connection_attempt = 0;
|
|
|
|
if ((audioSyncPort <= 0) || (audioSyncEnabled == AUDIOSYNC_NONE)) return; // Sound Sync not enabled
|
|
if (!(apActive || WLED_CONNECTED || interfacesInited)) {
|
|
if (udpSyncConnected) {
|
|
udpSyncConnected = false;
|
|
fftUdp.stop();
|
|
receivedFormat = 0;
|
|
DEBUGSR_PRINTLN(F("AR connectUDPSoundSync(): connection lost, UDP closed."));
|
|
}
|
|
return; // neither AP nor other connections available
|
|
}
|
|
if (udpSyncConnected) return; // already connected
|
|
if (millis() - last_connection_attempt < 15000) return; // only try once in 15 seconds
|
|
if (updateIsRunning) return; // don't reconnect during OTA
|
|
|
|
// if we arrive here, we need a UDP connection but don't have one
|
|
last_connection_attempt = millis();
|
|
connected(); // try to start UDP
|
|
}
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
void transmitAudioData()
|
|
{
|
|
if (!udpSyncConnected) return;
|
|
static uint8_t frameCounter = 0;
|
|
//DEBUGSR_PRINTLN("Transmitting UDP Mic Packet");
|
|
|
|
audioSyncPacket transmitData;
|
|
memset(reinterpret_cast<void *>(&transmitData), 0, sizeof(transmitData)); // make sure that the packet - including "invisible" padding bytes added by the compiler - is fully initialized
|
|
|
|
strncpy_P(transmitData.header, PSTR(UDP_SYNC_HEADER), 6);
|
|
// transmit samples that were not modified by limitSampleDynamics()
|
|
transmitData.sampleRaw = (soundAgc) ? rawSampleAgc: sampleRaw;
|
|
transmitData.sampleSmth = (soundAgc) ? sampleAgc : sampleAvg;
|
|
transmitData.samplePeak = udpSamplePeak ? 1:0;
|
|
udpSamplePeak = false; // Reset udpSamplePeak after we've transmitted it
|
|
transmitData.frameCounter = frameCounter;
|
|
transmitData.zeroCrossingCount = zeroCrossingCount;
|
|
|
|
for (int i = 0; i < NUM_GEQ_CHANNELS; i++) {
|
|
transmitData.fftResult[i] = fftResult[i];
|
|
}
|
|
|
|
// WLEDMM transmit soundPressure as 16 bit fixed point
|
|
uint32_t pressure16bit = max(0.0f, soundPressure) * 256.0f; // convert to fixed point, remove negative values
|
|
uint16_t pressInt = pressure16bit / 256; // integer part
|
|
uint16_t pressFract = pressure16bit % 256; // faction part
|
|
if (pressInt > 255) pressInt = 255; // saturation at 255
|
|
transmitData.pressure[0] = (uint8_t)pressInt;
|
|
transmitData.pressure[1] = (uint8_t)pressFract;
|
|
|
|
transmitData.FFT_Magnitude = my_magnitude;
|
|
transmitData.FFT_MajorPeak = FFT_MajorPeak;
|
|
|
|
if (fftUdp.beginMulticastPacket() != 0) { // beginMulticastPacket returns 0 in case of error
|
|
fftUdp.write(reinterpret_cast<uint8_t *>(&transmitData), sizeof(transmitData));
|
|
fftUdp.endPacket();
|
|
}
|
|
|
|
frameCounter++;
|
|
} // transmitAudioData()
|
|
#endif
|
|
static bool isValidUdpSyncVersion(const char *header) {
|
|
return strncmp_P(header, UDP_SYNC_HEADER, 6) == 0;
|
|
}
|
|
static bool isValidUdpSyncVersion_v1(const char *header) {
|
|
return strncmp_P(header, UDP_SYNC_HEADER_v1, 6) == 0;
|
|
}
|
|
|
|
bool decodeAudioData(int packetSize, uint8_t *fftBuff) {
|
|
if((0 == packetSize) || (nullptr == fftBuff)) return false; // sanity check
|
|
//audioSyncPacket *receivedPacket = reinterpret_cast<audioSyncPacket*>(fftBuff);
|
|
audioSyncPacket receivedPacket;
|
|
memset(&receivedPacket, 0, sizeof(receivedPacket)); // start clean
|
|
memcpy(&receivedPacket, fftBuff, min((unsigned)packetSize, (unsigned)sizeof(receivedPacket))); // don't violate alignment - thanks @willmmiles
|
|
|
|
// validate sequence, discard out-of-sequence packets
|
|
static uint8_t lastFrameCounter = 0;
|
|
// add info for UI
|
|
if ((receivedPacket.frameCounter > 0) && (lastFrameCounter > 0)) receivedFormat = 3; // v2+
|
|
else receivedFormat = 2; // v2
|
|
// check sequence
|
|
bool sequenceOK = false;
|
|
if(receivedPacket.frameCounter > lastFrameCounter) sequenceOK = true; // sequence OK
|
|
if((lastFrameCounter < 12) && (receivedPacket.frameCounter > 248)) sequenceOK = false; // prevent sequence "roll-back" due to late packets (1->254)
|
|
if((lastFrameCounter > 248) && (receivedPacket.frameCounter < 12)) sequenceOK = true; // handle roll-over (255 -> 0)
|
|
if(audioSyncSequence == false) sequenceOK = true; // sequence checking disabled by user
|
|
if((sequenceOK == false) && (receivedPacket.frameCounter != 0)) { // always accept "0" - its the legacy value
|
|
DEBUGSR_PRINTF("Skipping audio frame out of order or duplicated - %u vs %u\n", lastFrameCounter, receivedPacket.frameCounter);
|
|
return false; // reject out-of sequence frame
|
|
}
|
|
else {
|
|
lastFrameCounter = receivedPacket.frameCounter;
|
|
}
|
|
|
|
// update samples for effects
|
|
volumeSmth = fmaxf(receivedPacket.sampleSmth, 0.0f);
|
|
volumeRaw = fmaxf(receivedPacket.sampleRaw, 0.0f);
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
// update internal samples
|
|
sampleRaw = volumeRaw;
|
|
sampleAvg = volumeSmth;
|
|
rawSampleAgc = volumeRaw;
|
|
sampleAgc = volumeSmth;
|
|
multAgc = 1.0f;
|
|
#endif
|
|
// Only change samplePeak IF it's currently false.
|
|
// If it's true already, then the animation still needs to respond.
|
|
autoResetPeak();
|
|
if (!samplePeak) {
|
|
samplePeak = receivedPacket.samplePeak >0 ? true:false;
|
|
if (samplePeak) timeOfPeak = millis();
|
|
//userVar1 = samplePeak;
|
|
}
|
|
//These values are only computed by ESP32
|
|
for (int i = 0; i < NUM_GEQ_CHANNELS; i++) fftResult[i] = receivedPacket.fftResult[i];
|
|
my_magnitude = fmaxf(receivedPacket.FFT_Magnitude, 0.0f);
|
|
FFT_Magnitude = my_magnitude;
|
|
FFT_MajorPeak = constrain(receivedPacket.FFT_MajorPeak, 1.0f, 11025.0f); // restrict value to range expected by effects
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
FFT_MajPeakSmth = FFT_MajPeakSmth + 0.42f * (FFT_MajorPeak - FFT_MajPeakSmth); // simulate smooth value
|
|
#endif
|
|
agcSensitivity = 128.0f; // substitute - V2 format does not include this value
|
|
zeroCrossingCount = receivedPacket.zeroCrossingCount;
|
|
|
|
// WLEDMM extract soundPressure
|
|
if ((receivedPacket.pressure[0] != 0) || (receivedPacket.pressure[1] != 0)) {
|
|
// found something in gap "reserved2"
|
|
soundPressure = float(receivedPacket.pressure[1]) / 256.0f; // fractional part
|
|
soundPressure += float(receivedPacket.pressure[0]); // integer part
|
|
} else {
|
|
soundPressure = volumeSmth; // fallback
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void decodeAudioData_v1(int packetSize, uint8_t *fftBuff) {
|
|
audioSyncPacket_v1 *receivedPacket = reinterpret_cast<audioSyncPacket_v1*>(fftBuff);
|
|
// update samples for effects
|
|
volumeSmth = fmaxf(receivedPacket->sampleAgc, 0.0f);
|
|
volumeRaw = volumeSmth; // V1 format does not have "raw" AGC sample
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
// update internal samples
|
|
sampleRaw = fmaxf(receivedPacket->sampleRaw, 0.0f);
|
|
sampleAvg = fmaxf(receivedPacket->sampleAvg, 0.0f);;
|
|
sampleAgc = volumeSmth;
|
|
rawSampleAgc = volumeRaw;
|
|
multAgc = 1.0f;
|
|
#endif
|
|
// Only change samplePeak IF it's currently false.
|
|
// If it's true already, then the animation still needs to respond.
|
|
autoResetPeak();
|
|
if (!samplePeak) {
|
|
samplePeak = receivedPacket->samplePeak >0 ? true:false;
|
|
if (samplePeak) timeOfPeak = millis();
|
|
//userVar1 = samplePeak;
|
|
}
|
|
//These values are only available on the ESP32
|
|
for (int i = 0; i < NUM_GEQ_CHANNELS; i++) fftResult[i] = receivedPacket->fftResult[i];
|
|
my_magnitude = fmaxf(receivedPacket->FFT_Magnitude, 0.0);
|
|
FFT_Magnitude = my_magnitude;
|
|
FFT_MajorPeak = constrain(receivedPacket->FFT_MajorPeak, 1.0, 11025.0); // restrict value to range expected by effects
|
|
soundPressure = volumeSmth; // substitute - V1 format does not include this value
|
|
agcSensitivity = 128.0f; // substitute - V1 format does not include this value
|
|
}
|
|
|
|
bool receiveAudioData() // check & process new data. return TRUE in case that new audio data was received.
|
|
{
|
|
if (!udpSyncConnected) return false;
|
|
bool haveFreshData = false;
|
|
|
|
size_t packetSize = 0;
|
|
// WLEDMM use exception handler to catch out-of-memory errors
|
|
#if __cpp_exceptions
|
|
try{
|
|
packetSize = fftUdp.parsePacket();
|
|
} catch(...) {
|
|
packetSize = 0; // low heap memory -> discard packet.
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
fftUdp.flush(); // this does not work on 8266
|
|
#endif
|
|
DEBUG_PRINTLN(F("receiveAudioData: parsePacket out of memory exception caught!"));
|
|
// USER_FLUSH();
|
|
}
|
|
#else
|
|
packetSize = fftUdp.parsePacket();
|
|
#endif
|
|
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
if ((packetSize > 0) && ((packetSize < 5) || (packetSize > UDPSOUND_MAX_PACKET))) fftUdp.flush(); // discard invalid packets (too small or too big)
|
|
#endif
|
|
if ((packetSize > 5) && (packetSize <= UDPSOUND_MAX_PACKET)) {
|
|
static uint8_t fftUdpBuffer[UDPSOUND_MAX_PACKET+1] = { 0 }; // static buffer for receiving, to reuse the same memory and avoid heap fragmentation
|
|
//DEBUGSR_PRINTLN("Received UDP Sync Packet");
|
|
fftUdp.read(fftUdpBuffer, packetSize);
|
|
|
|
// VERIFY THAT THIS IS A COMPATIBLE PACKET
|
|
if (packetSize == sizeof(audioSyncPacket) && (isValidUdpSyncVersion((const char *)fftUdpBuffer))) {
|
|
receivedFormat = 2;
|
|
haveFreshData = decodeAudioData(packetSize, fftUdpBuffer);
|
|
//DEBUGSR_PRINTLN("Finished parsing UDP Sync Packet v2");
|
|
} else {
|
|
if (packetSize == sizeof(audioSyncPacket_v1) && (isValidUdpSyncVersion_v1((const char *)fftUdpBuffer))) {
|
|
decodeAudioData_v1(packetSize, fftUdpBuffer);
|
|
receivedFormat = 1;
|
|
//DEBUGSR_PRINTLN("Finished parsing UDP Sync Packet v1");
|
|
haveFreshData = true;
|
|
} else receivedFormat = 0; // unknown format
|
|
}
|
|
}
|
|
return haveFreshData;
|
|
}
|
|
|
|
|
|
//////////////////////
|
|
// usermod functions//
|
|
//////////////////////
|
|
|
|
public:
|
|
//Functions called by WLED or other usermods
|
|
|
|
/*
|
|
* setup() is called once at boot. WiFi is not yet connected at this point.
|
|
* You can use it to initialize variables, sensors or similar.
|
|
* It is called *AFTER* readFromConfig()
|
|
*/
|
|
void setup()
|
|
{
|
|
disableSoundProcessing = true; // just to be sure
|
|
if (!initDone) {
|
|
// usermod exchangeable data
|
|
// we will assign all usermod exportable data here as pointers to original variables or arrays and allocate memory for pointers
|
|
um_data = new um_data_t;
|
|
um_data->u_size = 12;
|
|
um_data->u_type = new um_types_t[um_data->u_size];
|
|
um_data->u_data = new void*[um_data->u_size];
|
|
um_data->u_data[0] = &volumeSmth; //*used (New)
|
|
um_data->u_type[0] = UMT_FLOAT;
|
|
um_data->u_data[1] = &volumeRaw; // used (New)
|
|
um_data->u_type[1] = UMT_UINT16;
|
|
um_data->u_data[2] = fftResult; //*used (Blurz, DJ Light, Noisemove, GEQ_base, 2D Funky Plank, Akemi)
|
|
um_data->u_type[2] = UMT_BYTE_ARR;
|
|
um_data->u_data[3] = &samplePeak; //*used (Puddlepeak, Ripplepeak, Waterfall)
|
|
um_data->u_type[3] = UMT_BYTE;
|
|
um_data->u_data[4] = &FFT_MajorPeak; //*used (Ripplepeak, Freqmap, Freqmatrix, Freqpixels, Freqwave, Gravfreq, Rocktaves, Waterfall)
|
|
um_data->u_type[4] = UMT_FLOAT;
|
|
um_data->u_data[5] = &my_magnitude; // used (New)
|
|
um_data->u_type[5] = UMT_FLOAT;
|
|
um_data->u_data[6] = &maxVol; // assigned in effect function from UI element!!! (Puddlepeak, Ripplepeak, Waterfall)
|
|
um_data->u_type[6] = UMT_BYTE;
|
|
um_data->u_data[7] = &binNum; // assigned in effect function from UI element!!! (Puddlepeak, Ripplepeak, Waterfall)
|
|
um_data->u_type[7] = UMT_BYTE;
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
um_data->u_data[8] = &FFT_MajPeakSmth; // new
|
|
um_data->u_type[8] = UMT_FLOAT;
|
|
#else
|
|
um_data->u_data[8] = &FFT_MajorPeak; // substitute for 8266
|
|
um_data->u_type[8] = UMT_FLOAT;
|
|
#endif
|
|
um_data->u_data[9] = &soundPressure; // used (New)
|
|
um_data->u_type[9] = UMT_FLOAT;
|
|
um_data->u_data[10] = &agcSensitivity; // used (New) - dummy value on 8266
|
|
um_data->u_type[10] = UMT_FLOAT;
|
|
um_data->u_data[11] = &zeroCrossingCount; // for auto playlist usermod
|
|
um_data->u_type[11] = UMT_UINT16;
|
|
}
|
|
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
|
|
// Reset I2S peripheral for good measure - not needed in esp-idf v4.4.x and later.
|
|
#if ESP_IDF_VERSION < ESP_IDF_VERSION_VAL(4, 4, 0)
|
|
i2s_driver_uninstall(I2S_NUM_0); // E (696) I2S: i2s_driver_uninstall(2006): I2S port 0 has not installed
|
|
#if !defined(CONFIG_IDF_TARGET_ESP32C3)
|
|
delay(100);
|
|
periph_module_reset(PERIPH_I2S0_MODULE); // not possible on -C3
|
|
#endif
|
|
#endif
|
|
delay(100); // Give that poor microphone some time to setup.
|
|
|
|
#if !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32C3)
|
|
if ((i2sckPin == I2S_PIN_NO_CHANGE) && (i2ssdPin >= 0) && (i2swsPin >= 0)
|
|
&& ((dmType == 1) || (dmType == 4)) ) dmType = 51; // dummy user support: SCK == -1 --means--> PDM microphone
|
|
#endif
|
|
|
|
useInputFilter = 2; // default: DC blocker
|
|
switch (dmType) {
|
|
#if defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32S3)
|
|
// stub cases for not-yet-supported I2S modes on other ESP32 chips
|
|
case 0: //ADC analog
|
|
#if defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32C3)
|
|
case 5: //PDM Microphone
|
|
case 51: //legacy PDM Microphone
|
|
#endif
|
|
#endif
|
|
case 1:
|
|
DEBUGSR_PRINT(F("AR: Generic I2S Microphone - ")); DEBUGSR_PRINTLN(F(I2S_MIC_CHANNEL_TEXT));
|
|
audioSource = new I2SSource(SAMPLE_RATE, BLOCK_SIZE);
|
|
delay(100);
|
|
if (audioSource) audioSource->initialize(i2swsPin, i2ssdPin, i2sckPin);
|
|
break;
|
|
case 2:
|
|
DEBUGSR_PRINTLN(F("AR: ES7243 Microphone (right channel only)."));
|
|
//useInputFilter = 0; // in case you need to disable low-cut software filtering
|
|
audioSource = new ES7243(SAMPLE_RATE, BLOCK_SIZE);
|
|
delay(100);
|
|
// WLEDMM align global pins
|
|
if ((sdaPin >= 0) && (i2c_sda < 0)) i2c_sda = sdaPin; // copy usermod prefs into globals (if globals not defined)
|
|
if ((sclPin >= 0) && (i2c_scl < 0)) i2c_scl = sclPin;
|
|
if (i2c_sda >= 0) sdaPin = -1; // -1 = use global
|
|
if (i2c_scl >= 0) sclPin = -1;
|
|
|
|
if (audioSource) audioSource->initialize(i2swsPin, i2ssdPin, i2sckPin, mclkPin);
|
|
break;
|
|
case 3:
|
|
DEBUGSR_PRINT(F("AR: SPH0645 Microphone - ")); DEBUGSR_PRINTLN(F(I2S_MIC_CHANNEL_TEXT));
|
|
audioSource = new SPH0654(SAMPLE_RATE, BLOCK_SIZE);
|
|
delay(100);
|
|
audioSource->initialize(i2swsPin, i2ssdPin, i2sckPin);
|
|
break;
|
|
case 4:
|
|
DEBUGSR_PRINT(F("AR: Generic I2S Microphone with Master Clock - ")); DEBUGSR_PRINTLN(F(I2S_MIC_CHANNEL_TEXT));
|
|
audioSource = new I2SSource(SAMPLE_RATE, BLOCK_SIZE, 1.0f/24.0f);
|
|
//audioSource = new I2SSource(SAMPLE_RATE, BLOCK_SIZE, 1.0f/24.0f, false); // I2S SLAVE mode - does not work, unfortunately
|
|
delay(100);
|
|
if (audioSource) audioSource->initialize(i2swsPin, i2ssdPin, i2sckPin, mclkPin);
|
|
break;
|
|
#if !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32C3)
|
|
case 5:
|
|
DEBUGSR_PRINT(F("AR: I2S PDM Microphone - ")); DEBUGSR_PRINTLN(F(I2S_PDM_MIC_CHANNEL_TEXT));
|
|
audioSource = new I2SSource(SAMPLE_RATE, BLOCK_SIZE, 1.0f/4.0f);
|
|
useInputFilter = 1; // PDM bandpass filter - this reduces the noise floor on SPM1423 from 5% Vpp (~380) down to 0.05% Vpp (~5)
|
|
delay(100);
|
|
if (audioSource) audioSource->initialize(i2swsPin, i2ssdPin);
|
|
break;
|
|
case 51:
|
|
DEBUGSR_PRINT(F("AR: Legacy PDM Microphone - ")); DEBUGSR_PRINTLN(F(I2S_PDM_MIC_CHANNEL_TEXT));
|
|
audioSource = new I2SSource(SAMPLE_RATE, BLOCK_SIZE, 1.0f);
|
|
useInputFilter = 1; // PDM bandpass filter
|
|
delay(100);
|
|
if (audioSource) audioSource->initialize(i2swsPin, i2ssdPin);
|
|
break;
|
|
#endif
|
|
case 6:
|
|
#ifdef use_es8388_mic
|
|
DEBUGSR_PRINTLN(F("AR: ES8388 Source (Mic)"));
|
|
#else
|
|
DEBUGSR_PRINTLN(F("AR: ES8388 Source (Line-In)"));
|
|
#endif
|
|
audioSource = new ES8388Source(SAMPLE_RATE, BLOCK_SIZE, 1.0f);
|
|
//useInputFilter = 0; // to disable low-cut software filtering and restore previous behaviour
|
|
delay(100);
|
|
// WLEDMM align global pins
|
|
if ((sdaPin >= 0) && (i2c_sda < 0)) i2c_sda = sdaPin; // copy usermod prefs into globals (if globals not defined)
|
|
if ((sclPin >= 0) && (i2c_scl < 0)) i2c_scl = sclPin;
|
|
if (i2c_sda >= 0) sdaPin = -1; // -1 = use global
|
|
if (i2c_scl >= 0) sclPin = -1;
|
|
|
|
if (audioSource) audioSource->initialize(i2swsPin, i2ssdPin, i2sckPin, mclkPin);
|
|
break;
|
|
case 7:
|
|
#ifdef use_wm8978_mic
|
|
DEBUGSR_PRINTLN(F("AR: WM8978 Source (Mic)"));
|
|
#else
|
|
DEBUGSR_PRINTLN(F("AR: WM8978 Source (Line-In)"));
|
|
#endif
|
|
audioSource = new WM8978Source(SAMPLE_RATE, BLOCK_SIZE, 1.0f);
|
|
//useInputFilter = 0; // to disable low-cut software filtering and restore previous behaviour
|
|
delay(100);
|
|
// WLEDMM align global pins
|
|
if ((sdaPin >= 0) && (i2c_sda < 0)) i2c_sda = sdaPin; // copy usermod prefs into globals (if globals not defined)
|
|
if ((sclPin >= 0) && (i2c_scl < 0)) i2c_scl = sclPin;
|
|
if (i2c_sda >= 0) sdaPin = -1; // -1 = use global
|
|
if (i2c_scl >= 0) sclPin = -1;
|
|
|
|
if (audioSource) audioSource->initialize(i2swsPin, i2ssdPin, i2sckPin, mclkPin);
|
|
break;
|
|
case 8:
|
|
DEBUGSR_PRINTLN(F("AR: AC101 Source (Line-In)"));
|
|
audioSource = new AC101Source(SAMPLE_RATE, BLOCK_SIZE, 1.0f);
|
|
//useInputFilter = 0; // to disable low-cut software filtering and restore previous behaviour
|
|
delay(100);
|
|
// WLEDMM align global pins
|
|
if ((sdaPin >= 0) && (i2c_sda < 0)) i2c_sda = sdaPin; // copy usermod prefs into globals (if globals not defined)
|
|
if ((sclPin >= 0) && (i2c_scl < 0)) i2c_scl = sclPin;
|
|
if (i2c_sda >= 0) sdaPin = -1; // -1 = use global
|
|
if (i2c_scl >= 0) sclPin = -1;
|
|
case 9:
|
|
DEBUGSR_PRINTLN(F("AR: ES8311 Source (Mic)"));
|
|
audioSource = new ES8311Source(SAMPLE_RATE, BLOCK_SIZE, 1.0f);
|
|
//useInputFilter = 0; // to disable low-cut software filtering and restore previous behaviour
|
|
delay(100);
|
|
// WLEDMM align global pins
|
|
if ((sdaPin >= 0) && (i2c_sda < 0)) i2c_sda = sdaPin; // copy usermod prefs into globals (if globals not defined)
|
|
if ((sclPin >= 0) && (i2c_scl < 0)) i2c_scl = sclPin;
|
|
if (i2c_sda >= 0) sdaPin = -1; // -1 = use global
|
|
if (i2c_scl >= 0) sclPin = -1;
|
|
if (audioSource) audioSource->initialize(i2swsPin, i2ssdPin, i2sckPin, mclkPin);
|
|
break;
|
|
|
|
case 255: // falls through
|
|
case 254: // dummy "network receive only" driver
|
|
if (audioSource) delete audioSource;
|
|
audioSource = nullptr;
|
|
disableSoundProcessing = true;
|
|
audioSyncEnabled = AUDIOSYNC_REC; // force udp sound receive mode
|
|
break;
|
|
|
|
#if !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(CONFIG_IDF_TARGET_ESP32S3)
|
|
// ADC over I2S is only possible on "classic" ESP32
|
|
case 0:
|
|
default:
|
|
DEBUGSR_PRINTLN(F("AR: Analog Microphone (left channel only)."));
|
|
useInputFilter = 1; // PDM bandpass filter seems to work well for analog, too
|
|
audioSource = new I2SAdcSource(SAMPLE_RATE, BLOCK_SIZE);
|
|
delay(100);
|
|
if (audioSource) audioSource->initialize(audioPin);
|
|
break;
|
|
#endif
|
|
}
|
|
delay(250); // give microphone enough time to initialise
|
|
|
|
if (!audioSource && (dmType < 254)) enabled = false; // audio failed to initialise
|
|
#endif
|
|
if (enabled) onUpdateBegin(false); // create FFT task, and initialize network
|
|
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
if (audioSource && FFT_Task == nullptr) enabled = false; // FFT task creation failed
|
|
if((!audioSource) || (!audioSource->isInitialized())) { // audio source failed to initialize. Still stay "enabled", as there might be input arriving via UDP Sound Sync
|
|
|
|
if (dmType < 254) { DEBUGSR_PRINTLN(F("AR: Failed to initialize sound input driver. Please check input PIN settings."));}
|
|
else { DEBUGSR_PRINTLN(F("AR: No sound input driver configured - network receive only."));}
|
|
disableSoundProcessing = true;
|
|
} else {
|
|
DEBUGSR_PRINTLN(F("AR: sound input driver initialized successfully."));
|
|
}
|
|
#endif
|
|
if (enabled) disableSoundProcessing = false; // all good - enable audio processing
|
|
// try to start UDP
|
|
last_UDPTime = 0;
|
|
receivedFormat = 0;
|
|
delay(100);
|
|
if (enabled) connectUDPSoundSync();
|
|
initDone = true;
|
|
DEBUGSR_PRINT(F("AR: init done, enabled = "));
|
|
DEBUGSR_PRINTLN(enabled ? F("true.") : F("false."));
|
|
// USER_FLUSH();
|
|
|
|
// dump audiosync data layout
|
|
#if defined(SR_DEBUG)
|
|
{
|
|
audioSyncPacket data;
|
|
USER_PRINTF("\naudioSyncPacket_v1 size = %d\n", sizeof(audioSyncPacket_v1)); // size 88
|
|
USER_PRINTF("audioSyncPacket size = %d\n", sizeof(audioSyncPacket)); // size 44
|
|
USER_PRINTF("| char header[6] offset = %2d size = %2d\n", offsetof(audioSyncPacket, header[0]), sizeof(data.header)); // offset 0 size 6
|
|
USER_PRINTF("| uint8_t pressure[2] offset = %2d size = %2d\n", offsetof(audioSyncPacket, pressure[0]), sizeof(data.pressure)); // offset 6 size 2
|
|
USER_PRINTF("| float sampleRaw offset = %2d size = %2d\n", offsetof(audioSyncPacket, sampleRaw), sizeof(data.sampleRaw)); // offset 8 size 4
|
|
USER_PRINTF("| float sampleSmth offset = %2d size = %2d\n", offsetof(audioSyncPacket, sampleSmth), sizeof(data.sampleSmth)); // offset 12 size 4
|
|
USER_PRINTF("| uint8_t samplePeak offset = %2d size = %2d\n", offsetof(audioSyncPacket, samplePeak), sizeof(data.samplePeak)); // offset 16 size 1
|
|
USER_PRINTF("| uint8_t frameCounter offset = %2d size = %2d\n", offsetof(audioSyncPacket, frameCounter), sizeof(data.frameCounter)); // offset 17 size 1
|
|
USER_PRINTF("| uint8_t fftResult[16] offset = %2d size = %2d\n", offsetof(audioSyncPacket, fftResult[0]), sizeof(data.fftResult)); // offset 18 size 16
|
|
USER_PRINTF("| uint16_t zeroCrossingCount offset = %2d size = %2d\n", offsetof(audioSyncPacket, zeroCrossingCount), sizeof(data.zeroCrossingCount)); // offset 34 size 2
|
|
USER_PRINTF("| float FFT_Magnitude offset = %2d size = %2d\n", offsetof(audioSyncPacket, FFT_Magnitude), sizeof(data.FFT_Magnitude));// offset 36 size 4
|
|
USER_PRINTF("| float FFT_MajorPeak offset = %2d size = %2d\n", offsetof(audioSyncPacket, FFT_MajorPeak), sizeof(data.FFT_MajorPeak));// offset 40 size 4
|
|
USER_PRINTLN(); USER_FLUSH();
|
|
}
|
|
#endif
|
|
|
|
#if defined(ARDUINO_ARCH_ESP32) && defined(SR_DEBUG)
|
|
DEBUGSR_PRINTF("|| %-9s min free stack %d\n", pcTaskGetTaskName(NULL), uxTaskGetStackHighWaterMark(NULL)); //WLEDMM
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* connected() is called every time the WiFi is (re)connected
|
|
* Use it to initialize network interfaces
|
|
*/
|
|
void connected()
|
|
{
|
|
if (udpSyncConnected) { // clean-up: if open, close old UDP sync connection
|
|
udpSyncConnected = false;
|
|
fftUdp.stop();
|
|
receivedFormat = 0;
|
|
DEBUGSR_PRINTLN(F("AR connected(): old UDP connection closed."));
|
|
}
|
|
|
|
if ((audioSyncPort > 0) && (audioSyncEnabled > AUDIOSYNC_NONE)) {
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
udpSyncConnected = fftUdp.beginMulticast(IPAddress(239, 0, 0, 1), audioSyncPort);
|
|
#else
|
|
udpSyncConnected = fftUdp.beginMulticast(WiFi.localIP(), IPAddress(239, 0, 0, 1), audioSyncPort);
|
|
#endif
|
|
receivedFormat = 0;
|
|
if (udpSyncConnected) last_UDPTime = millis();
|
|
if (apActive && !(WLED_CONNECTED)) {
|
|
DEBUGSR_PRINTLN(udpSyncConnected ? F("AR connected(): UDP: connected using AP.") : F("AR connected(): UDP is disconnected (AP)."));
|
|
} else {
|
|
DEBUGSR_PRINTLN(udpSyncConnected ? F("AR connected(): UDP: connected to WIFI.") : F("AR connected(): UDP is disconnected (Wifi)."));
|
|
}
|
|
}
|
|
|
|
#if defined(ARDUINO_ARCH_ESP32) && defined(SR_DEBUG)
|
|
DEBUGSR_PRINTF("|| %-9s min free stack %d\n", pcTaskGetTaskName(NULL), uxTaskGetStackHighWaterMark(NULL)); //WLEDMM
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* loop() is called continuously. Here you can check for events, read sensors, etc.
|
|
*
|
|
* Tips:
|
|
* 1. You can use "if (WLED_CONNECTED)" to check for a successful network connection.
|
|
* Additionally, "if (WLED_MQTT_CONNECTED)" is available to check for a connection to an MQTT broker.
|
|
*
|
|
* 2. Try to avoid using the delay() function. NEVER use delays longer than 10 milliseconds.
|
|
* Instead, use a timer check as shown here.
|
|
*/
|
|
void loop()
|
|
{
|
|
static unsigned long lastUMRun = millis();
|
|
|
|
if (!enabled) {
|
|
disableSoundProcessing = true; // keep processing suspended (FFT task)
|
|
lastUMRun = millis(); // update time keeping
|
|
return;
|
|
}
|
|
// We cannot wait indefinitely before processing audio data
|
|
if (strip.isServicing() && (millis() - lastUMRun < 2)) return; // WLEDMM isServicing() is the critical part (be nice, but not too nice)
|
|
|
|
// sound sync "receive or local"
|
|
bool useNetworkAudio = false;
|
|
if (audioSyncEnabled > AUDIOSYNC_SEND) { // we are in "receive" or "receive+local" mode
|
|
if (udpSyncConnected && ((millis() - last_UDPTime) <= AUDIOSYNC_IDLE_MS))
|
|
useNetworkAudio = true;
|
|
else
|
|
useNetworkAudio = false;
|
|
if (audioSyncEnabled == AUDIOSYNC_REC)
|
|
useNetworkAudio = true; // don't fall back to local audio in standard "receive mode"
|
|
}
|
|
|
|
// suspend local sound processing when "real time mode" is active (E131, UDP, ADALIGHT, ARTNET)
|
|
if ( (realtimeOverride == REALTIME_OVERRIDE_NONE) // please add other overrides here if needed
|
|
&&( (realtimeMode == REALTIME_MODE_GENERIC)
|
|
||(realtimeMode == REALTIME_MODE_E131)
|
|
||(realtimeMode == REALTIME_MODE_UDP)
|
|
||(realtimeMode == REALTIME_MODE_ADALIGHT)
|
|
||(realtimeMode == REALTIME_MODE_ARTNET) ) ) // please add other modes here if needed
|
|
{
|
|
#ifdef WLED_DEBUG
|
|
if ((disableSoundProcessing == false) && (audioSyncEnabled < AUDIOSYNC_REC)) { // we just switched to "disabled"
|
|
DEBUG_PRINTLN("[AR userLoop] realtime mode active - audio processing suspended.");
|
|
DEBUG_PRINTF( " RealtimeMode = %d; RealtimeOverride = %d\n", int(realtimeMode), int(realtimeOverride));
|
|
}
|
|
#endif
|
|
disableSoundProcessing = true;
|
|
useNetworkAudio = false;
|
|
} else {
|
|
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_DEBUG)
|
|
if ((disableSoundProcessing == true) && (audioSyncEnabled < AUDIOSYNC_REC) && audioSource->isInitialized()) { // we just switched to "enabled"
|
|
DEBUG_PRINTLN("[AR userLoop] realtime mode ended - audio processing resumed.");
|
|
DEBUG_PRINTF( " RealtimeMode = %d; RealtimeOverride = %d\n", int(realtimeMode), int(realtimeOverride));
|
|
}
|
|
#endif
|
|
if ((disableSoundProcessing == true) && (audioSyncEnabled != AUDIOSYNC_REC)) lastUMRun = millis(); // just left "realtime mode" - update timekeeping
|
|
disableSoundProcessing = false;
|
|
}
|
|
|
|
if (audioSyncEnabled == AUDIOSYNC_REC) disableSoundProcessing = true; // make sure everything is disabled IF in audio Receive mode
|
|
if (audioSyncEnabled == AUDIOSYNC_SEND) disableSoundProcessing = false; // keep running audio IF we're in audio Transmit mode
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
if (!audioSource || !audioSource->isInitialized()) { // no audio source
|
|
disableSoundProcessing = true;
|
|
if (audioSyncEnabled > AUDIOSYNC_SEND) useNetworkAudio = true;
|
|
}
|
|
if ((audioSyncEnabled == AUDIOSYNC_REC_PLUS) && useNetworkAudio) disableSoundProcessing = true; // UDP sound receiving - disable local audio
|
|
|
|
#ifdef SR_DEBUG
|
|
// debug info in case that task stack usage changes
|
|
static unsigned int minLoopStackFree = UINT32_MAX;
|
|
unsigned int stackFree = uxTaskGetStackHighWaterMark(NULL);
|
|
if (minLoopStackFree > stackFree) {
|
|
minLoopStackFree = stackFree;
|
|
DEBUGSR_PRINTF("|| %-9s min free stack %d\n", pcTaskGetTaskName(NULL), minLoopStackFree); //WLEDMM
|
|
}
|
|
#endif
|
|
|
|
// Only run the sampling code IF we're not in Receive mode or realtime mode
|
|
if ((audioSyncEnabled != AUDIOSYNC_REC) && !disableSoundProcessing && !useNetworkAudio) {
|
|
if (soundAgc > AGC_NUM_PRESETS) soundAgc = 0; // make sure that AGC preset is valid (to avoid array bounds violation)
|
|
|
|
unsigned long t_now = millis(); // remember current time
|
|
int userloopDelay = int(t_now - lastUMRun);
|
|
if (lastUMRun == 0) userloopDelay=0; // startup - don't have valid data from last run.
|
|
|
|
#if defined(SR_DEBUG)
|
|
// complain when audio userloop has been delayed for long time. Currently we need userloop running between 500 and 1500 times per second.
|
|
// softhack007 disabled temporarily - avoid serial console spam with MANY LEDs and low FPS
|
|
//if ((userloopDelay > /*23*/ 65) && !disableSoundProcessing && (audioSyncEnabled == AUDIOSYNC_NONE)) {
|
|
//DEBUG_PRINTF("[AR userLoop] hiccup detected -> was inactive for last %d millis!\n", userloopDelay);
|
|
//}
|
|
#endif
|
|
|
|
// run filters, and repeat in case of loop delays (hick-up compensation)
|
|
if (userloopDelay <2) userloopDelay = 0; // minor glitch, no problem
|
|
if (userloopDelay >200) userloopDelay = 200; // limit number of filter re-runs
|
|
do {
|
|
getSample(); // run microphone sampling filters
|
|
agcAvg(t_now - userloopDelay); // Calculated the PI adjusted value as sampleAvg
|
|
userloopDelay -= 2; // advance "simulated time" by 2ms
|
|
} while (userloopDelay > 0);
|
|
lastUMRun = t_now; // update time keeping
|
|
|
|
// update samples for effects (raw, smooth)
|
|
volumeSmth = (soundAgc) ? sampleAgc : sampleAvg;
|
|
volumeRaw = (soundAgc) ? rawSampleAgc: sampleRaw;
|
|
// update FFTMagnitude, taking into account AGC amplification
|
|
my_magnitude = FFT_Magnitude; // / 16.0f, 8.0f, 4.0f done in effects
|
|
if (soundAgc) my_magnitude *= multAgc;
|
|
if (volumeSmth < 1 ) my_magnitude = 0.001f; // noise gate closed - mute
|
|
|
|
// get AGC sensitivity and sound pressure
|
|
static unsigned long lastEstimate = 0;
|
|
#ifdef WLEDMM_FASTPATH
|
|
if (millis() - lastEstimate > 7) {
|
|
#else
|
|
if (millis() - lastEstimate > 12) {
|
|
#endif
|
|
lastEstimate = millis();
|
|
agcSensitivity = getSensitivity();
|
|
if (limiterOn)
|
|
soundPressure = soundPressure + 0.38f * (estimatePressure() - soundPressure); // dynamics limiter on -> some smoothing
|
|
else
|
|
soundPressure = soundPressure + 0.95f * (estimatePressure() - soundPressure); // dynamics limiter on -> raw value
|
|
}
|
|
limitSampleDynamics();
|
|
} // if (!disableSoundProcessing)
|
|
#endif
|
|
|
|
autoResetPeak(); // auto-reset sample peak after strip minShowDelay
|
|
if (!udpSyncConnected) udpSamplePeak = false; // reset UDP samplePeak while UDP is unconnected
|
|
|
|
connectUDPSoundSync(); // ensure we have a connection - if needed
|
|
|
|
// UDP Microphone Sync - receive mode
|
|
if ((audioSyncEnabled & AUDIOSYNC_REC) && udpSyncConnected) {
|
|
// Only run the audio listener code if we're in Receive mode
|
|
static float syncVolumeSmth = 0;
|
|
bool have_new_sample = false;
|
|
if (millis() - lastTime > delayMs) {
|
|
have_new_sample = receiveAudioData();
|
|
if (have_new_sample) {
|
|
last_UDPTime = millis();
|
|
useNetworkAudio = true; // UDP input arrived - use it
|
|
}
|
|
lastTime = millis();
|
|
} else {
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
fftUdp.flush(); // WLEDMM: Flush this if we haven't read it. Does not work on 8266.
|
|
#endif
|
|
}
|
|
if (useNetworkAudio) {
|
|
if (have_new_sample) syncVolumeSmth = volumeSmth; // remember received sample
|
|
else volumeSmth = syncVolumeSmth; // restore originally received sample for next run of dynamics limiter
|
|
limitSampleDynamics(); // run dynamics limiter on received volumeSmth, to hide jumps and hickups
|
|
limitGEQDynamics(have_new_sample); // WLEDMM experimental: smooth FFT (GEQ) samples
|
|
}
|
|
} else {
|
|
receivedFormat = 0;
|
|
}
|
|
|
|
if ( (audioSyncEnabled & AUDIOSYNC_REC) // receive mode
|
|
&& udpSyncConnected // connected
|
|
&& (receivedFormat > 0) // we actually received something in the past
|
|
&& ((millis() - last_UDPTime) > 25000)) { // close connection after 25sec idle
|
|
udpSyncConnected = false;
|
|
receivedFormat = 0;
|
|
fftUdp.stop();
|
|
volumeSmth =0.0f;
|
|
volumeRaw =0;
|
|
my_magnitude = 0.1; FFT_Magnitude = 0.01; FFT_MajorPeak = 2;
|
|
soundPressure = 1.0f;
|
|
agcSensitivity = 64.0f;
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
multAgc = 1;
|
|
#endif
|
|
DEBUGSR_PRINTLN(F("AR loop(): UDP closed due to inactivity."));
|
|
}
|
|
|
|
#if defined(MIC_LOGGER) || defined(MIC_SAMPLING_LOG) || defined(FFT_SAMPLING_LOG)
|
|
static unsigned long lastMicLoggerTime = 0;
|
|
if (millis()-lastMicLoggerTime > 20) {
|
|
lastMicLoggerTime = millis();
|
|
logAudio();
|
|
}
|
|
#endif
|
|
|
|
// Info Page: keep max sample from last 5 seconds
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
if ((millis() - sampleMaxTimer) > CYCLE_SAMPLEMAX) {
|
|
sampleMaxTimer = millis();
|
|
maxSample5sec = (0.15 * maxSample5sec) + 0.85 *((soundAgc) ? sampleAgc : sampleAvg); // reset, and start with some smoothing
|
|
if (sampleAvg < 1) maxSample5sec = 0; // noise gate
|
|
} else {
|
|
if ((sampleAvg >= 1)) maxSample5sec = fmaxf(maxSample5sec, (soundAgc) ? rawSampleAgc : sampleRaw); // follow maximum volume
|
|
}
|
|
#else // similar functionality for 8266 receive only - use VolumeSmth instead of raw sample data
|
|
if ((millis() - sampleMaxTimer) > CYCLE_SAMPLEMAX) {
|
|
sampleMaxTimer = millis();
|
|
maxSample5sec = (0.15 * maxSample5sec) + 0.85 * volumeSmth; // reset, and start with some smoothing
|
|
if (volumeSmth < 1.0f) maxSample5sec = 0; // noise gate
|
|
if (maxSample5sec < 0.0f) maxSample5sec = 0; // avoid negative values
|
|
} else {
|
|
if (volumeSmth >= 1.0f) maxSample5sec = fmaxf(maxSample5sec, volumeRaw); // follow maximum volume
|
|
}
|
|
#endif
|
|
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
//UDP Microphone Sync - transmit mode
|
|
#if defined(WLEDMM_FASTPATH)
|
|
if ((audioSyncEnabled & AUDIOSYNC_SEND) && (haveNewFFTResult || (millis() - lastTime > 24))) { // fastpath: send data once results are ready, or each 25ms as fallback (max sampling time is 23ms)
|
|
#else
|
|
if ((audioSyncEnabled & AUDIOSYNC_SEND) && (millis() - lastTime > 20)) { // standard: send data each 20ms
|
|
#endif
|
|
haveNewFFTResult = false; // reset notification
|
|
// Only run the transmit code IF we're in Transmit mode
|
|
transmitAudioData();
|
|
lastTime = millis();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if defined(_MoonModules_WLED_) && defined(WLEDMM_FASTPATH)
|
|
void loop2(void) {
|
|
loop();
|
|
}
|
|
#endif
|
|
|
|
bool getUMData(um_data_t **data)
|
|
{
|
|
if (!data || !enabled) return false; // no pointer provided by caller or not enabled -> exit
|
|
*data = um_data;
|
|
return true;
|
|
}
|
|
|
|
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
void onUpdateBegin(bool init)
|
|
{
|
|
#ifdef WLED_DEBUG
|
|
fftTime = sampleTime = filterTime = 0;
|
|
#endif
|
|
// gracefully suspend FFT task (if running)
|
|
disableSoundProcessing = true;
|
|
|
|
// reset sound data
|
|
micDataReal = 0.0f;
|
|
volumeRaw = 0; volumeSmth = 0;
|
|
sampleAgc = 0; sampleAvg = 0;
|
|
sampleRaw = 0; rawSampleAgc = 0;
|
|
my_magnitude = 0; FFT_Magnitude = 0; FFT_MajorPeak = 1;
|
|
multAgc = 1;
|
|
// reset FFT data
|
|
memset(fftCalc, 0, sizeof(fftCalc));
|
|
memset(fftAvg, 0, sizeof(fftAvg));
|
|
memset(fftResult, 0, sizeof(fftResult));
|
|
for(int i=(init?0:1); i<NUM_GEQ_CHANNELS; i+=2) fftResult[i] = 16; // make a tiny pattern
|
|
inputLevel = 128; // reset level slider to default
|
|
autoResetPeak();
|
|
|
|
if (init && FFT_Task) {
|
|
delay(25); // WLEDMM: givesome time for I2S driver to finish sampling
|
|
vTaskSuspend(FFT_Task); // update is about to begin, disable task to prevent crash
|
|
if (udpSyncConnected) { // close UDP sync connection (if open)
|
|
udpSyncConnected = false;
|
|
fftUdp.stop();
|
|
DEBUGSR_PRINTLN(F("AR onUpdateBegin(true): UDP connection closed."));
|
|
receivedFormat = 0;
|
|
}
|
|
} else {
|
|
// update has failed or create task requested
|
|
if (FFT_Task) {
|
|
vTaskResume(FFT_Task);
|
|
connected(); // resume UDP
|
|
} else {
|
|
if (audioSource) // WLEDMM only create FFT task if we have a valid audio source
|
|
// xTaskCreatePinnedToCore(
|
|
// xTaskCreate( // no need to "pin" this task to core #0
|
|
xTaskCreateUniversal(
|
|
FFTcode, // Function to implement the task
|
|
"FFT", // Name of the task
|
|
3592, // Stack size in words // 3592 leaves 800-1024 bytes of task stack free
|
|
NULL, // Task input parameter
|
|
FFTTASK_PRIORITY, // Priority of the task
|
|
&FFT_Task // Task handle
|
|
, 0 // Core where the task should run
|
|
);
|
|
}
|
|
}
|
|
micDataReal = 0.0f; // just to be sure
|
|
if (enabled && audioSource) disableSoundProcessing = false;
|
|
updateIsRunning = init;
|
|
|
|
#if defined(ARDUINO_ARCH_ESP32) && defined(SR_DEBUG)
|
|
DEBUGSR_PRINTF("|| %-9s min free stack %d\n", pcTaskGetTaskName(NULL), uxTaskGetStackHighWaterMark(NULL)); //WLEDMM
|
|
#endif
|
|
}
|
|
|
|
#else // reduced function for 8266
|
|
void onUpdateBegin(bool init)
|
|
{
|
|
// gracefully suspend audio (if running)
|
|
disableSoundProcessing = true;
|
|
// reset sound data
|
|
volumeRaw = 0; volumeSmth = 0;
|
|
for(int i=(init?0:1); i<NUM_GEQ_CHANNELS; i+=2) fftResult[i] = 16; // make a tiny pattern
|
|
autoResetPeak();
|
|
|
|
if (init) {
|
|
if (udpSyncConnected) { // close UDP sync connection (if open)
|
|
udpSyncConnected = false;
|
|
fftUdp.stop();
|
|
DEBUGSR_PRINTLN(F("AR onUpdateBegin(true): UDP connection closed."));
|
|
receivedFormat = 0;
|
|
}
|
|
}
|
|
if (enabled) disableSoundProcessing = init; // init = true means that OTA is just starting --> don't process audio
|
|
updateIsRunning = init;
|
|
}
|
|
#endif
|
|
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
/**
|
|
* handleButton() can be used to override default button behaviour. Returning true
|
|
* will prevent button working in a default way.
|
|
*/
|
|
bool handleButton(uint8_t b) {
|
|
yield();
|
|
// crude way of determining if audio input is analog
|
|
// better would be for AudioSource to implement getType()
|
|
if (enabled
|
|
&& dmType == 0 && audioPin>=0
|
|
&& (buttonType[b] == BTN_TYPE_ANALOG || buttonType[b] == BTN_TYPE_ANALOG_INVERTED)
|
|
) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
////////////////////////////
|
|
// Settings and Info Page //
|
|
////////////////////////////
|
|
|
|
/*
|
|
* addToJsonInfo() can be used to add custom entries to the /json/info part of the JSON API.
|
|
* Creating an "u" object allows you to add custom key/value pairs to the Info section of the WLED web UI.
|
|
* Below it is shown how this could be used for e.g. a light sensor
|
|
*/
|
|
void addToJsonInfo(JsonObject& root)
|
|
{
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
char myStringBuffer[16]; // buffer for snprintf() - not used yet on 8266
|
|
#endif
|
|
JsonObject user = root["u"];
|
|
if (user.isNull()) user = root.createNestedObject("u");
|
|
|
|
JsonArray infoArr = user.createNestedArray(FPSTR(_name));
|
|
|
|
String uiDomString = F("<button class=\"btn btn-xs\" onclick=\"requestJson({");
|
|
uiDomString += FPSTR(_name);
|
|
uiDomString += F(":{");
|
|
uiDomString += FPSTR(_enabled);
|
|
uiDomString += enabled ? F(":false}});\">") : F(":true}});\">");
|
|
uiDomString += F("<i class=\"icons");
|
|
uiDomString += enabled ? F(" on") : F(" off");
|
|
uiDomString += F("\"></i>");
|
|
uiDomString += F("</button>");
|
|
infoArr.add(uiDomString);
|
|
|
|
if (enabled) {
|
|
bool audioSyncIDLE = false; // true if sound sync is not receiving
|
|
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
// audio sync status
|
|
if ((audioSyncEnabled & AUDIOSYNC_REC) && (!udpSyncConnected || (millis() - last_UDPTime > AUDIOSYNC_IDLE_MS))) // connected and nothing received in 2.5sec
|
|
audioSyncIDLE = true;
|
|
if ((audioSource == nullptr) || (!audioSource->isInitialized())) // local audio not configured
|
|
audioSyncIDLE = false;
|
|
|
|
// Input Level Slider
|
|
if (disableSoundProcessing == false) { // only show slider when audio processing is running
|
|
if (soundAgc > 0) {
|
|
infoArr = user.createNestedArray(F("GEQ Input Level")); // if AGC is on, this slider only affects fftResult[] frequencies
|
|
// show slider value as a number
|
|
float post_gain = (float)inputLevel/128.0f;
|
|
if (post_gain < 1.0f) post_gain = ((post_gain -1.0f) * 0.8f) +1.0f;
|
|
post_gain = roundf(post_gain * 100.0f);
|
|
snprintf_P(myStringBuffer, 15, PSTR("%3.0f %%"), post_gain);
|
|
infoArr.add(myStringBuffer);
|
|
} else {
|
|
infoArr = user.createNestedArray(F("Audio Input Level"));
|
|
}
|
|
uiDomString = F("<div class=\"slider\"><div class=\"sliderwrap il\"><input class=\"noslide\" onchange=\"requestJson({");
|
|
uiDomString += FPSTR(_name);
|
|
uiDomString += F(":{");
|
|
uiDomString += FPSTR(_inputLvl);
|
|
uiDomString += F(":parseInt(this.value)}});\" oninput=\"updateTrail(this);\" max=255 min=0 type=\"range\" value=");
|
|
uiDomString += inputLevel;
|
|
uiDomString += F(" /><div class=\"sliderdisplay\"></div></div></div>"); //<output class=\"sliderbubble\"></output>
|
|
infoArr.add(uiDomString);
|
|
}
|
|
#endif
|
|
// The following can be used for troubleshooting user errors and is so not enclosed in #ifdef WLED_DEBUG
|
|
// current Audio input
|
|
infoArr = user.createNestedArray(F("Audio Source"));
|
|
if ((audioSyncEnabled == AUDIOSYNC_REC) || (!audioSyncIDLE && (audioSyncEnabled == AUDIOSYNC_REC_PLUS))){
|
|
// UDP sound sync - receive mode
|
|
infoArr.add(F("UDP sound sync"));
|
|
if (udpSyncConnected) {
|
|
if (millis() - last_UDPTime < AUDIOSYNC_IDLE_MS)
|
|
infoArr.add(F(" - receiving"));
|
|
else
|
|
infoArr.add(F(" - idle"));
|
|
} else {
|
|
infoArr.add(F(" - no connection"));
|
|
}
|
|
#ifndef ARDUINO_ARCH_ESP32 // substitute for 8266
|
|
} else {
|
|
infoArr.add(F("sound sync Off"));
|
|
}
|
|
#else // ESP32 only
|
|
} else {
|
|
// Analog or I2S digital input
|
|
if (audioSource && (audioSource->isInitialized())) {
|
|
// audio source successfully configured
|
|
if (audioSource->getType() == AudioSource::Type_I2SAdc) {
|
|
infoArr.add(F("ADC analog"));
|
|
} else {
|
|
if (dmType != 51)
|
|
infoArr.add(F("I2S digital"));
|
|
else
|
|
infoArr.add(F("legacy I2S PDM"));
|
|
}
|
|
// input level or "silence"
|
|
if (maxSample5sec > 1.0) {
|
|
float my_usage = 100.0f * (maxSample5sec / 255.0f);
|
|
snprintf_P(myStringBuffer, 15, PSTR(" - peak %3d%%"), int(my_usage));
|
|
infoArr.add(myStringBuffer);
|
|
} else {
|
|
infoArr.add(F(" - quiet"));
|
|
}
|
|
} else {
|
|
// error during audio source setup
|
|
infoArr.add(F("not initialized"));
|
|
if (dmType < 254) infoArr.add(F(" - check pin settings"));
|
|
}
|
|
}
|
|
|
|
// Sound processing (FFT and input filters)
|
|
infoArr = user.createNestedArray(F("Sound Processing"));
|
|
if (audioSource && (disableSoundProcessing == false)) {
|
|
infoArr.add(F("running"));
|
|
} else {
|
|
infoArr.add(F("suspended"));
|
|
}
|
|
|
|
// AGC or manual Gain
|
|
if ((soundAgc == 0) && (disableSoundProcessing == false) && !(audioSyncEnabled == AUDIOSYNC_REC)) {
|
|
infoArr = user.createNestedArray(F("Manual Gain"));
|
|
float myGain = ((float)sampleGain/40.0f * (float)inputLevel/128.0f) + 1.0f/16.0f; // non-AGC gain from presets
|
|
infoArr.add(roundf(myGain*100.0f) / 100.0f);
|
|
infoArr.add("x");
|
|
}
|
|
if ((soundAgc > 0) && (disableSoundProcessing == false) && !(audioSyncEnabled == AUDIOSYNC_REC)) {
|
|
infoArr = user.createNestedArray(F("AGC Gain"));
|
|
infoArr.add(roundf(multAgc*100.0f) / 100.0f);
|
|
infoArr.add("x");
|
|
}
|
|
#endif
|
|
// UDP Sound Sync status
|
|
infoArr = user.createNestedArray(F("UDP Sound Sync"));
|
|
if (audioSyncEnabled) {
|
|
if (audioSyncEnabled & AUDIOSYNC_SEND) {
|
|
infoArr.add(F("send mode"));
|
|
if ((udpSyncConnected) && (millis() - lastTime < AUDIOSYNC_IDLE_MS)) infoArr.add(F(" v2+"));
|
|
} else if (audioSyncEnabled == AUDIOSYNC_REC) {
|
|
infoArr.add(F("receive mode"));
|
|
} else if (audioSyncEnabled == AUDIOSYNC_REC_PLUS) {
|
|
infoArr.add(F("receive+local mode"));
|
|
}
|
|
} else
|
|
infoArr.add("off");
|
|
if (audioSyncEnabled && !udpSyncConnected) infoArr.add(" <i>(unconnected)</i>");
|
|
if (audioSyncEnabled && udpSyncConnected && (millis() - last_UDPTime < AUDIOSYNC_IDLE_MS)) {
|
|
if (receivedFormat == 1) infoArr.add(F(" v1"));
|
|
if (receivedFormat == 2) infoArr.add(F(" v2"));
|
|
if (receivedFormat == 3) {
|
|
if (audioSyncSequence) infoArr.add(F(" v2+")); // Sequence checking enabled
|
|
else infoArr.add(F(" v2"));
|
|
}
|
|
}
|
|
|
|
#if defined(WLED_DEBUG) || defined(SR_DEBUG) || defined(SR_STATS)
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
infoArr = user.createNestedArray(F("I2S cycle time"));
|
|
infoArr.add(roundf(fftTaskCycle)/100.0f);
|
|
infoArr.add(" ms");
|
|
|
|
infoArr = user.createNestedArray(F("Sampling time"));
|
|
infoArr.add(roundf(sampleTime)/100.0f);
|
|
infoArr.add(" ms");
|
|
|
|
infoArr = user.createNestedArray(F("Filtering time"));
|
|
infoArr.add(roundf(filterTime)/100.0f);
|
|
infoArr.add(" ms");
|
|
|
|
infoArr = user.createNestedArray(F("FFT time"));
|
|
infoArr.add(roundf(fftTime)/100.0f);
|
|
|
|
#ifdef FFT_USE_SLIDING_WINDOW
|
|
unsigned timeBudget = doSlidingFFT ? (FFT_MIN_CYCLE) : fftTaskCycle / 115;
|
|
#else
|
|
unsigned timeBudget = (FFT_MIN_CYCLE);
|
|
#endif
|
|
if ((fftTime/100) >= timeBudget) // FFT time over budget -> I2S buffer will overflow
|
|
infoArr.add("<b style=\"color:red;\">! ms</b>");
|
|
else if ((fftTime/85 + filterTime/85 + sampleTime/85) >= timeBudget) // FFT time >75% of budget -> risk of instability
|
|
infoArr.add("<b style=\"color:orange;\"> ms!</b>");
|
|
else
|
|
infoArr.add(" ms");
|
|
|
|
DEBUGSR_PRINTF("AR I2S cycle time: %5.2f ms\n", roundf(fftTaskCycle)/100.0f);
|
|
DEBUGSR_PRINTF("AR Sampling time : %5.2f ms\n", roundf(sampleTime)/100.0f);
|
|
DEBUGSR_PRINTF("AR filter time : %5.2f ms\n", roundf(filterTime)/100.0f);
|
|
DEBUGSR_PRINTF("AR FFT time : %5.2f ms\n", roundf(fftTime)/100.0f);
|
|
#endif
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* addToJsonState() can be used to add custom entries to the /json/state part of the JSON API (state object).
|
|
* Values in the state object may be modified by connected clients
|
|
*/
|
|
void addToJsonState(JsonObject& root)
|
|
{
|
|
if (!initDone) return; // prevent crash on boot applyPreset()
|
|
JsonObject usermod = root[FPSTR(_name)];
|
|
if (usermod.isNull()) {
|
|
usermod = root.createNestedObject(FPSTR(_name));
|
|
}
|
|
usermod["on"] = enabled;
|
|
}
|
|
|
|
|
|
/*
|
|
* readFromJsonState() can be used to receive data clients send to the /json/state part of the JSON API (state object).
|
|
* Values in the state object may be modified by connected clients
|
|
*/
|
|
void readFromJsonState(JsonObject& root)
|
|
{
|
|
if (!initDone) return; // prevent crash on boot applyPreset()
|
|
bool prevEnabled = enabled;
|
|
JsonObject usermod = root[FPSTR(_name)];
|
|
if (!usermod.isNull()) {
|
|
if (usermod[FPSTR(_enabled)].is<bool>()) {
|
|
enabled = usermod[FPSTR(_enabled)].as<bool>();
|
|
if (prevEnabled != enabled) onUpdateBegin(!enabled);
|
|
}
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
if (usermod[FPSTR(_inputLvl)].is<int>()) {
|
|
inputLevel = min(255,max(0,usermod[FPSTR(_inputLvl)].as<int>()));
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* addToConfig() can be used to add custom persistent settings to the cfg.json file in the "um" (usermod) object.
|
|
* It will be called by WLED when settings are actually saved (for example, LED settings are saved)
|
|
* If you want to force saving the current state, use serializeConfig() in your loop().
|
|
*
|
|
* CAUTION: serializeConfig() will initiate a filesystem write operation.
|
|
* It might cause the LEDs to stutter and will cause flash wear if called too often.
|
|
* Use it sparingly and always in the loop, never in network callbacks!
|
|
*
|
|
* addToConfig() will make your settings editable through the Usermod Settings page automatically.
|
|
*
|
|
* Usermod Settings Overview:
|
|
* - Numeric values are treated as floats in the browser.
|
|
* - If the numeric value entered into the browser contains a decimal point, it will be parsed as a C float
|
|
* before being returned to the Usermod. The float data type has only 6-7 decimal digits of precision, and
|
|
* doubles are not supported, numbers will be rounded to the nearest float value when being parsed.
|
|
* The range accepted by the input field is +/- 1.175494351e-38 to +/- 3.402823466e+38.
|
|
* - If the numeric value entered into the browser doesn't contain a decimal point, it will be parsed as a
|
|
* C int32_t (range: -2147483648 to 2147483647) before being returned to the usermod.
|
|
* Overflows or underflows are truncated to the max/min value for an int32_t, and again truncated to the type
|
|
* used in the Usermod when reading the value from ArduinoJson.
|
|
* - Pin values can be treated differently from an integer value by using the key name "pin"
|
|
* - "pin" can contain a single or array of integer values
|
|
* - On the Usermod Settings page there is simple checking for pin conflicts and warnings for special pins
|
|
* - Red color indicates a conflict. Yellow color indicates a pin with a warning (e.g. an input-only pin)
|
|
* - Tip: use int8_t to store the pin value in the Usermod, so a -1 value (pin not set) can be used
|
|
*
|
|
* See usermod_v2_auto_save.h for an example that saves Flash space by reusing ArduinoJson key name strings
|
|
*
|
|
* If you need a dedicated settings page with custom layout for your Usermod, that takes a lot more work.
|
|
* You will have to add the setting to the HTML, xml.cpp and set.cpp manually.
|
|
* See the WLED Soundreactive fork (code and wiki) for reference. https://github.com/atuline/WLED
|
|
*
|
|
* I highly recommend checking out the basics of ArduinoJson serialization and deserialization in order to use custom settings!
|
|
*/
|
|
void addToConfig(JsonObject& root)
|
|
{
|
|
JsonObject top = root.createNestedObject(FPSTR(_name));
|
|
top[FPSTR(_enabled)] = enabled;
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
#if !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(CONFIG_IDF_TARGET_ESP32S3)
|
|
JsonObject amic = top.createNestedObject(FPSTR(_analogmic));
|
|
amic["pin"] = audioPin;
|
|
#endif
|
|
|
|
JsonObject dmic = top.createNestedObject(FPSTR(_digitalmic));
|
|
dmic[F("type")] = dmType;
|
|
// WLEDMM: align with globals I2C pins
|
|
if ((dmType == 2) || (dmType == 6)) { // only for ES7243 and ES8388
|
|
if (i2c_sda >= 0) sdaPin = -1; // -1 = use global
|
|
if (i2c_scl >= 0) sclPin = -1; // -1 = use global
|
|
}
|
|
JsonArray pinArray = dmic.createNestedArray("pin");
|
|
pinArray.add(i2ssdPin);
|
|
pinArray.add(i2swsPin);
|
|
pinArray.add(i2sckPin);
|
|
pinArray.add(mclkPin);
|
|
pinArray.add(sdaPin);
|
|
pinArray.add(sclPin);
|
|
|
|
JsonObject cfg = top.createNestedObject("config");
|
|
cfg[F("squelch")] = soundSquelch;
|
|
cfg[F("gain")] = sampleGain;
|
|
cfg[F("AGC")] = soundAgc;
|
|
|
|
//WLEDMM: experimental settings
|
|
JsonObject poweruser = top.createNestedObject("experiments");
|
|
poweruser[F("micLev")] = micLevelMethod;
|
|
poweruser[F("Mic_Quality")] = micQuality;
|
|
poweruser[F("freqDist")] = freqDist;
|
|
//poweruser[F("freqRMS")] = averageByRMS;
|
|
poweruser[F("FFT_Window")] = fftWindow;
|
|
#ifdef FFT_USE_SLIDING_WINDOW
|
|
poweruser[F("I2S_FastPath")] = doSlidingFFT;
|
|
#endif
|
|
JsonObject freqScale = top.createNestedObject("frequency");
|
|
freqScale[F("scale")] = FFTScalingMode;
|
|
freqScale[F("profile")] = pinkIndex; //WLEDMM
|
|
#endif
|
|
JsonObject dynLim = top.createNestedObject("dynamics");
|
|
dynLim[F("limiter")] = limiterOn;
|
|
dynLim[F("rise")] = attackTime;
|
|
dynLim[F("fall")] = decayTime;
|
|
|
|
JsonObject sync = top.createNestedObject("sync");
|
|
sync[F("port")] = audioSyncPort;
|
|
sync[F("mode")] = audioSyncEnabled;
|
|
sync[F("check_sequence")] = audioSyncSequence;
|
|
}
|
|
|
|
|
|
/*
|
|
* readFromConfig() can be used to read back the custom settings you added with addToConfig().
|
|
* This is called by WLED when settings are loaded (currently this only happens immediately after boot, or after saving on the Usermod Settings page)
|
|
*
|
|
* readFromConfig() is called BEFORE setup(). This means you can use your persistent values in setup() (e.g. pin assignments, buffer sizes),
|
|
* but also that if you want to write persistent values to a dynamic buffer, you'd need to allocate it here instead of in setup.
|
|
* If you don't know what that is, don't fret. It most likely doesn't affect your use case :)
|
|
*
|
|
* Return true in case the config values returned from Usermod Settings were complete, or false if you'd like WLED to save your defaults to disk (so any missing values are editable in Usermod Settings)
|
|
*
|
|
* getJsonValue() returns false if the value is missing, or copies the value into the variable provided and returns true if the value is present
|
|
* The configComplete variable is true only if the "exampleUsermod" object and all values are present. If any values are missing, WLED will know to call addToConfig() to save them
|
|
*
|
|
* This function is guaranteed to be called on boot, but could also be called every time settings are updated
|
|
*/
|
|
bool readFromConfig(JsonObject& root)
|
|
{
|
|
JsonObject top = root[FPSTR(_name)];
|
|
bool configComplete = !top.isNull();
|
|
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
// remember previous values
|
|
auto oldEnabled = enabled;
|
|
auto oldDMType = dmType;
|
|
auto oldI2SsdPin = i2ssdPin;
|
|
auto oldI2SwsPin = i2swsPin;
|
|
auto oldI2SckPin = i2sckPin;
|
|
auto oldI2SmclkPin = mclkPin;
|
|
#endif
|
|
|
|
configComplete &= getJsonValue(top[FPSTR(_enabled)], enabled);
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
#if !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(CONFIG_IDF_TARGET_ESP32S3)
|
|
configComplete &= getJsonValue(top[FPSTR(_analogmic)]["pin"], audioPin);
|
|
#else
|
|
audioPin = -1; // MCU does not support analog mic
|
|
#endif
|
|
|
|
configComplete &= getJsonValue(top[FPSTR(_digitalmic)]["type"], dmType);
|
|
#if defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32S3)
|
|
if (dmType == 0) dmType = SR_DMTYPE; // MCU does not support analog
|
|
#if defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32C3)
|
|
if (dmType == 5) dmType = SR_DMTYPE; // MCU does not support PDM
|
|
if (dmType == 51) dmType = SR_DMTYPE; // MCU does not support legacy PDM
|
|
#endif
|
|
#else
|
|
if (dmType == 5) useInputFilter = 1; // enable filter for PDM
|
|
if (dmType == 51) useInputFilter = 1; // switch on filter for legacy PDM
|
|
#endif
|
|
|
|
configComplete &= getJsonValue(top[FPSTR(_digitalmic)]["pin"][0], i2ssdPin);
|
|
configComplete &= getJsonValue(top[FPSTR(_digitalmic)]["pin"][1], i2swsPin);
|
|
configComplete &= getJsonValue(top[FPSTR(_digitalmic)]["pin"][2], i2sckPin);
|
|
configComplete &= getJsonValue(top[FPSTR(_digitalmic)]["pin"][3], mclkPin);
|
|
configComplete &= getJsonValue(top[FPSTR(_digitalmic)]["pin"][4], sdaPin);
|
|
configComplete &= getJsonValue(top[FPSTR(_digitalmic)]["pin"][5], sclPin);
|
|
|
|
configComplete &= getJsonValue(top["config"][F("squelch")], soundSquelch);
|
|
configComplete &= getJsonValue(top["config"][F("gain")], sampleGain);
|
|
configComplete &= getJsonValue(top["config"][F("AGC")], soundAgc);
|
|
|
|
//WLEDMM: experimental settings
|
|
configComplete &= getJsonValue(top["experiments"][F("micLev")], micLevelMethod);
|
|
configComplete &= getJsonValue(top["experiments"][F("Mic_Quality")], micQuality);
|
|
configComplete &= getJsonValue(top["experiments"][F("freqDist")], freqDist);
|
|
//configComplete &= getJsonValue(top["experiments"][F("freqRMS")], averageByRMS);
|
|
configComplete &= getJsonValue(top["experiments"][F("FFT_Window")], fftWindow);
|
|
#ifdef FFT_USE_SLIDING_WINDOW
|
|
configComplete &= getJsonValue(top["experiments"][F("I2S_FastPath")], doSlidingFFT);
|
|
#endif
|
|
|
|
configComplete &= getJsonValue(top["frequency"][F("scale")], FFTScalingMode);
|
|
configComplete &= getJsonValue(top["frequency"][F("profile")], pinkIndex); //WLEDMM
|
|
#endif
|
|
configComplete &= getJsonValue(top["dynamics"][F("limiter")], limiterOn);
|
|
configComplete &= getJsonValue(top["dynamics"][F("rise")], attackTime);
|
|
configComplete &= getJsonValue(top["dynamics"][F("fall")], decayTime);
|
|
|
|
configComplete &= getJsonValue(top["sync"][F("port")], audioSyncPort);
|
|
configComplete &= getJsonValue(top["sync"][F("mode")], audioSyncEnabled);
|
|
configComplete &= getJsonValue(top["sync"][F("check_sequence")], audioSyncSequence);
|
|
|
|
// WLEDMM notify user when a reboot is necessary
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
if (initDone) {
|
|
if ((audioSource != nullptr) && (oldDMType != dmType)) errorFlag = ERR_REBOOT_NEEDED; // changing mic type requires reboot
|
|
if ( (audioSource != nullptr) && (enabled==true)
|
|
&& ((oldI2SsdPin != i2ssdPin) || (oldI2SsdPin != i2ssdPin) || (oldI2SckPin != i2sckPin)) ) errorFlag = ERR_REBOOT_NEEDED; // changing mic pins requires reboot
|
|
if ((audioSource != nullptr) && (oldI2SmclkPin != mclkPin)) errorFlag = ERR_REBOOT_NEEDED; // changing MCLK pin requires reboot
|
|
if ((oldDMType != dmType) && (oldDMType == 0)) errorFlag = ERR_POWEROFF_NEEDED; // changing from analog mic requires power cycle
|
|
if ((oldDMType != dmType) && (dmType == 0)) errorFlag = ERR_POWEROFF_NEEDED; // changing to analog mic requires power cycle
|
|
}
|
|
#endif
|
|
return configComplete;
|
|
}
|
|
|
|
|
|
void appendConfigData()
|
|
{
|
|
oappend(SET_F("ux='AudioReactive';")); // ux = shortcut for Audioreactive - fingers crossed that "ux" isn't already used as JS var, html post parameter or css style
|
|
oappend(SET_F("uxp=ux+':digitalmic:pin[]';")); // uxp = shortcut for AudioReactive:digitalmic:pin[]
|
|
oappend(SET_F("addInfo(ux+':help',0,'<button onclick=\"location.href="https://mm.kno.wled.ge/soundreactive/Sound-Settings"\" type=\"button\">?</button>');"));
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
//WLEDMM: add defaults
|
|
#if !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(CONFIG_IDF_TARGET_ESP32S3) // -S3/-S2/-C3 don't support analog audio
|
|
#ifdef AUDIOPIN
|
|
oappend(SET_F("xOpt(ux+':analogmic:pin',1,' ⎌',")); oappendi(AUDIOPIN); oappend(");");
|
|
#endif
|
|
// oappend(SET_F("aOpt(ux+':analogmic:pin',1);")); //only analog options
|
|
#endif
|
|
|
|
oappend(SET_F("dd=addDropdown(ux,'digitalmic:type');"));
|
|
#if SR_DMTYPE==254
|
|
oappend(SET_F("addOption(dd,'None - network receive only (⎌)',254);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'None - network receive only',254);"));
|
|
#endif
|
|
#if !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(CONFIG_IDF_TARGET_ESP32S3)
|
|
#if SR_DMTYPE==0
|
|
oappend(SET_F("addOption(dd,'Generic Analog (⎌)',0);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'Generic Analog',0);"));
|
|
#endif
|
|
#endif
|
|
#if SR_DMTYPE==1
|
|
oappend(SET_F("addOption(dd,'Generic I2S (⎌)',1);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'Generic I2S',1);"));
|
|
#endif
|
|
#if SR_DMTYPE==2
|
|
oappend(SET_F("addOption(dd,'ES7243 (⎌)',2);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'ES7243',2);"));
|
|
#endif
|
|
#if SR_DMTYPE==3
|
|
oappend(SET_F("addOption(dd,'SPH0654 (⎌)',3);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'SPH0654',3);"));
|
|
#endif
|
|
#if SR_DMTYPE==4
|
|
oappend(SET_F("addOption(dd,'Generic I2S with Mclk (⎌)',4);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'Generic I2S with Mclk',4);"));
|
|
#endif
|
|
#if !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32C3)
|
|
#if SR_DMTYPE==5
|
|
oappend(SET_F("addOption(dd,'Generic I2S PDM (⎌)',5);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'Generic I2S PDM',5);"));
|
|
#endif
|
|
#if SR_DMTYPE==51
|
|
oappend(SET_F("addOption(dd,'.Legacy I2S PDM ☾ (⎌)',51);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'.Legacy I2S PDM ☾',51);"));
|
|
#endif
|
|
#endif
|
|
#if SR_DMTYPE==6
|
|
oappend(SET_F("addOption(dd,'ES8388 ☾ (⎌)',6);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'ES8388 ☾',6);"));
|
|
#endif
|
|
#if SR_DMTYPE==7
|
|
oappend(SET_F("addOption(dd,'WM8978 ☾ (⎌)',7);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'WM8978 ☾',7);"));
|
|
#endif
|
|
#if SR_DMTYPE==8
|
|
oappend(SET_F("addOption(dd,'AC101 ☾ (⎌)',8);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'AC101 ☾',8);"));
|
|
#endif
|
|
#if SR_DMTYPE==9
|
|
oappend(SET_F("addOption(dd,'ES8311 ☾ (⎌)',9);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'ES8311 ☾',9);"));
|
|
#endif
|
|
#ifdef SR_SQUELCH
|
|
oappend(SET_F("addInfo(ux+':config:squelch',1,'<i>⎌ ")); oappendi(SR_SQUELCH); oappend("</i>');"); // 0 is field type, 1 is actual field
|
|
#endif
|
|
#ifdef SR_GAIN
|
|
oappend(SET_F("addInfo(ux+':config:gain',1,'<i>⎌ ")); oappendi(SR_GAIN); oappend("</i>');"); // 0 is field type, 1 is actual field
|
|
#endif
|
|
|
|
oappend(SET_F("dd=addDropdown(ux,'config:AGC');"));
|
|
oappend(SET_F("addOption(dd,'Off',0);"));
|
|
oappend(SET_F("addOption(dd,'Normal',1);"));
|
|
oappend(SET_F("addOption(dd,'Vivid',2);"));
|
|
oappend(SET_F("addOption(dd,'Lazy',3);"));
|
|
|
|
//WLEDMM: experimental settings
|
|
oappend(SET_F("xx='experiments';")); // shortcut
|
|
oappend(SET_F("dd=addDropdown(ux,xx+':micLev');"));
|
|
oappend(SET_F("addOption(dd,'Floating (⎌)',0);"));
|
|
oappend(SET_F("addOption(dd,'Freeze',1);"));
|
|
oappend(SET_F("addOption(dd,'Fast Freeze',2);"));
|
|
oappend(SET_F("addInfo(ux+':'+xx+':micLev',1,'☾');"));
|
|
|
|
oappend(SET_F("dd=addDropdown(ux,xx+':Mic_Quality');"));
|
|
oappend(SET_F("addOption(dd,'average (standard)',0);"));
|
|
oappend(SET_F("addOption(dd,'low noise',1);"));
|
|
oappend(SET_F("addOption(dd,'perfect',2);"));
|
|
|
|
oappend(SET_F("dd=addDropdown(ux,xx+':freqDist');"));
|
|
oappend(SET_F("addOption(dd,'Normal (⎌)',0);"));
|
|
oappend(SET_F("addOption(dd,'RightShift',1);"));
|
|
oappend(SET_F("addInfo(ux+':'+xx+':freqDist',1,'☾');"));
|
|
|
|
//oappend(SET_F("dd=addDropdown(ux,xx+':freqRMS');"));
|
|
//oappend(SET_F("addOption(dd,'Off (⎌)',0);"));
|
|
//oappend(SET_F("addOption(dd,'On',1);"));
|
|
//oappend(SET_F("addInfo(ux+':experiments:freqRMS',1,'☾');"));
|
|
|
|
oappend(SET_F("dd=addDropdown(ux,xx+':FFT_Window');"));
|
|
oappend(SET_F("addOption(dd,'Blackman-Harris (MM standard)',0);"));
|
|
oappend(SET_F("addOption(dd,'Hann (balanced)',1);"));
|
|
oappend(SET_F("addOption(dd,'Nuttall (more accurate)',2);"));
|
|
oappend(SET_F("addOption(dd,'Blackman',5);"));
|
|
oappend(SET_F("addOption(dd,'Hamming',3);"));
|
|
oappend(SET_F("addOption(dd,'Flat-Top (AC WLED, inaccurate)',4);"));
|
|
|
|
#ifdef FFT_USE_SLIDING_WINDOW
|
|
oappend(SET_F("dd=addDropdown(ux,xx+':I2S_FastPath');"));
|
|
oappend(SET_F("addOption(dd,'Off',0);"));
|
|
oappend(SET_F("addOption(dd,'On (⎌)',1);"));
|
|
oappend(SET_F("addInfo(ux+':'+xx+':I2S_FastPath',1,'☾');"));
|
|
#endif
|
|
|
|
oappend(SET_F("dd=addDropdown(ux,'dynamics:limiter');"));
|
|
oappend(SET_F("addOption(dd,'Off',0);"));
|
|
oappend(SET_F("addOption(dd,'On',1);"));
|
|
oappend(SET_F("addInfo(ux+':dynamics:limiter',0,' On ');")); // 0 is field type, 1 is actual field
|
|
oappend(SET_F("addInfo(ux+':dynamics:rise',1,'ms <i>(♪ effects only)</i>');"));
|
|
oappend(SET_F("addInfo(ux+':dynamics:fall',1,'ms <i>(♪ effects only)</i>');"));
|
|
|
|
oappend(SET_F("dd=addDropdown(ux,'frequency:scale');"));
|
|
oappend(SET_F("addOption(dd,'None',0);"));
|
|
oappend(SET_F("addOption(dd,'Linear (Amplitude)',2);"));
|
|
oappend(SET_F("addOption(dd,'Square Root (Energy)',3);"));
|
|
oappend(SET_F("addOption(dd,'Logarithmic (Loudness)',1);"));
|
|
|
|
//WLEDMM add defaults
|
|
oappend(SET_F("dd=addDropdown(ux,'frequency:profile');"));
|
|
#if SR_FREQ_PROF==0
|
|
oappend(SET_F("addOption(dd,'Generic Microphone (⎌)',0);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'Generic Microphone',0);"));
|
|
#endif
|
|
#if SR_FREQ_PROF==1
|
|
oappend(SET_F("addOption(dd,'Generic Line-In (⎌)',1);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'Generic Line-In',1);"));
|
|
#endif
|
|
#if SR_FREQ_PROF==5
|
|
oappend(SET_F("addOption(dd,'ICS-43434 (⎌)',5);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'ICS-43434',5);"));
|
|
#endif
|
|
#if SR_FREQ_PROF==6
|
|
oappend(SET_F("addOption(dd,'ICS-43434 - big speakers (⎌)',6);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'ICS-43434 - big speakers',6);"));
|
|
#endif
|
|
#if SR_FREQ_PROF==7
|
|
oappend(SET_F("addOption(dd,'SPM1423 (⎌)',7);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'SPM1423',7);"));
|
|
#endif
|
|
#if SR_FREQ_PROF==2
|
|
oappend(SET_F("addOption(dd,'IMNP441 (⎌)',2);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'IMNP441',2);"));
|
|
#endif
|
|
#if SR_FREQ_PROF==3
|
|
oappend(SET_F("addOption(dd,'IMNP441 - big speakers (⎌)',3);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'IMNP441 - big speakers',3);"));
|
|
#endif
|
|
#if SR_FREQ_PROF==4
|
|
oappend(SET_F("addOption(dd,'IMNP441 - small speakers (⎌)',4);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'IMNP441 - small speakers',4);"));
|
|
#endif
|
|
#if SR_FREQ_PROF==10
|
|
oappend(SET_F("addOption(dd,'flat - no adjustments (⎌)',10);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'flat - no adjustments',10);"));
|
|
#endif
|
|
#if SR_FREQ_PROF==8
|
|
oappend(SET_F("addOption(dd,'userdefined #1 (⎌)',8);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'userdefined #1',8);"));
|
|
#endif
|
|
#if SR_FREQ_PROF==9
|
|
oappend(SET_F("addOption(dd,'userdefined #2 (⎌)',9);"));
|
|
#else
|
|
oappend(SET_F("addOption(dd,'userdefined #2',9);"));
|
|
#endif
|
|
oappend(SET_F("addInfo(ux+':frequency:profile',1,'☾');"));
|
|
#endif
|
|
oappend(SET_F("dd=addDropdown(ux,'sync:mode');"));
|
|
oappend(SET_F("addOption(dd,'Off',0);")); // AUDIOSYNC_NONE
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
oappend(SET_F("addOption(dd,'Send',1);")); // AUDIOSYNC_SEND
|
|
#endif
|
|
oappend(SET_F("addOption(dd,'Receive',2);")); // AUDIOSYNC_REC
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
oappend(SET_F("addOption(dd,'Receive or Local',6);")); // AUDIOSYNC_REC_PLUS
|
|
#endif
|
|
// check_sequence: Receiver skips out-of-sequence packets when enabled
|
|
oappend(SET_F("dd=addDropdown(ux,'sync:check_sequence');"));
|
|
oappend(SET_F("addOption(dd,'Off',0);"));
|
|
oappend(SET_F("addOption(dd,'On',1);"));
|
|
|
|
oappend(SET_F("addInfo(ux+':sync:check_sequence',1,'<i>when receiving</i> ☾<br> Sync audio data with other WLEDs');")); // must append this to the last field of 'sync'
|
|
|
|
oappend(SET_F("addInfo(ux+':digitalmic:type',1,'<i>requires reboot!</i>');")); // 0 is field type, 1 is actual field
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
oappend(SET_F("addInfo(uxp,0,'<i>sd/data/dout</i>','I2S SD');"));
|
|
#ifdef I2S_SDPIN
|
|
oappend(SET_F("xOpt(uxp,0,' ⎌',")); oappendi(I2S_SDPIN); oappend(");");
|
|
#endif
|
|
|
|
oappend(SET_F("addInfo(uxp,1,'<i>ws/clk/lrck</i>','I2S WS');"));
|
|
// oappend(SET_F("dRO(uxp,1);")); // disable read only pins
|
|
#ifdef I2S_WSPIN
|
|
oappend(SET_F("xOpt(uxp,1,' ⎌',")); oappendi(I2S_WSPIN); oappend(");");
|
|
#endif
|
|
|
|
oappend(SET_F("addInfo(uxp,2,'<i>sck/bclk</i>','I2S SCK');"));
|
|
// oappend(SET_F("dRO(uxp,2);")); // disable read only pins
|
|
#ifdef I2S_CKPIN
|
|
oappend(SET_F("xOpt(uxp,2,' ⎌',")); oappendi(I2S_CKPIN); oappend(");");
|
|
#endif
|
|
|
|
oappend(SET_F("addInfo(uxp,3,'<i>master clock</i>','I2S MCLK');"));
|
|
// oappend(SET_F("dRO(uxp,3);")); // disable read only pins
|
|
#if !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(CONFIG_IDF_TARGET_ESP32S3)
|
|
// oappend(SET_F("dOpt(uxp,3,2,2);")); //only use -1, 0, 1 or 3
|
|
// oappend(SET_F("dOpt(uxp,3,4,39);")); //only use -1, 0, 1 or 3
|
|
#endif
|
|
#ifdef MCLK_PIN
|
|
oappend(SET_F("xOpt(uxp,3,' ⎌',")); oappendi(MCLK_PIN); oappend(");");
|
|
#endif
|
|
|
|
oappend(SET_F("addInfo(uxp,4,'','I2C SDA');"));
|
|
// oappend(SET_F("rOpt(uxp,4,'use global (")); oappendi(i2c_sda); oappend(")',-1);");
|
|
#ifdef ES7243_SDAPIN
|
|
oappend(SET_F("xOpt(uxp,4,' ⎌',")); oappendi(ES7243_SDAPIN); oappend(");");
|
|
#endif
|
|
|
|
oappend(SET_F("addInfo(uxp,5,'','I2C SCL');"));
|
|
// oappend(SET_F("rOpt(uxp,5,'use global (")); oappendi(i2c_scl); oappend(")',-1);");
|
|
#ifdef ES7243_SCLPIN
|
|
oappend(SET_F("xOpt(uxp,5,' ⎌',")); oappendi(ES7243_SCLPIN); oappend(");");
|
|
#endif
|
|
// oappend(SET_F("dRO(uxp,5);")); // disable read only pins
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* handleOverlayDraw() is called just before every show() (LED strip update frame) after effects have set the colors.
|
|
* Use this to blank out some LEDs or set them to a different color regardless of the set effect mode.
|
|
* Commonly used for custom clocks (Cronixie, 7 segment)
|
|
*/
|
|
//void handleOverlayDraw()
|
|
//{
|
|
//strip.setPixelColor(0, RGBW32(0,0,0,0)) // set the first pixel to black
|
|
//}
|
|
|
|
|
|
/*
|
|
* getId() allows you to optionally give your V2 usermod an unique ID (please define it in const.h!).
|
|
* This could be used in the future for the system to determine whether your usermod is installed.
|
|
*/
|
|
uint16_t getId()
|
|
{
|
|
return USERMOD_ID_AUDIOREACTIVE;
|
|
}
|
|
};
|
|
|
|
// strings to reduce flash memory usage (used more than twice)
|
|
const char AudioReactive::_name[] PROGMEM = "AudioReactive";
|
|
const char AudioReactive::_enabled[] PROGMEM = "enabled";
|
|
const char AudioReactive::_inputLvl[] PROGMEM = "inputLevel";
|
|
#if defined(ARDUINO_ARCH_ESP32) && !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(CONFIG_IDF_TARGET_ESP32S3)
|
|
const char AudioReactive::_analogmic[] PROGMEM = "analogmic";
|
|
#endif
|
|
const char AudioReactive::_digitalmic[] PROGMEM = "digitalmic";
|
|
const char AudioReactive::UDP_SYNC_HEADER[] PROGMEM = "00002"; // new sync header version, as format no longer compatible with previous structure
|
|
const char AudioReactive::UDP_SYNC_HEADER_v1[] PROGMEM = "00001"; // old sync header version - need to add backwards-compatibility feature
|