868 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			868 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Class implementation for addressing various light types
 | |
|  */
 | |
| 
 | |
| #include <Arduino.h>
 | |
| #include <IPAddress.h>
 | |
| #include "const.h"
 | |
| #include "pin_manager.h"
 | |
| #include "bus_wrapper.h"
 | |
| #include "bus_manager.h"
 | |
| 
 | |
| extern bool cctICused;
 | |
| 
 | |
| //colors.cpp
 | |
| uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
 | |
| 
 | |
| //udp.cpp
 | |
| uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, byte *buffer, uint8_t bri=255, bool isRGBW=false);
 | |
| 
 | |
| // enable additional debug output
 | |
| #if defined(WLED_DEBUG_HOST)
 | |
|   #include "net_debug.h"
 | |
|   #define DEBUGOUT NetDebug
 | |
| #else
 | |
|   #define DEBUGOUT Serial
 | |
| #endif
 | |
| 
 | |
| #ifdef WLED_DEBUG
 | |
|   #ifndef ESP8266
 | |
|   #include <rom/rtc.h>
 | |
|   #endif
 | |
|   #define DEBUG_PRINT(x) DEBUGOUT.print(x)
 | |
|   #define DEBUG_PRINTLN(x) DEBUGOUT.println(x)
 | |
|   #define DEBUG_PRINTF(x...) DEBUGOUT.printf(x)
 | |
|   #define DEBUG_PRINTF_P(x...) DEBUGOUT.printf_P(x)
 | |
| #else
 | |
|   #define DEBUG_PRINT(x)
 | |
|   #define DEBUG_PRINTLN(x)
 | |
|   #define DEBUG_PRINTF(x...)
 | |
|   #define DEBUG_PRINTF_P(x...)
 | |
| #endif
 | |
| 
 | |
| //color mangling macros
 | |
| #define RGBW32(r,g,b,w) (uint32_t((byte(w) << 24) | (byte(r) << 16) | (byte(g) << 8) | (byte(b))))
 | |
| #define R(c) (byte((c) >> 16))
 | |
| #define G(c) (byte((c) >> 8))
 | |
| #define B(c) (byte(c))
 | |
| #define W(c) (byte((c) >> 24))
 | |
| 
 | |
| 
 | |
| void ColorOrderMap::add(uint16_t start, uint16_t len, uint8_t colorOrder) {
 | |
|   if (_count >= WLED_MAX_COLOR_ORDER_MAPPINGS) {
 | |
|     return;
 | |
|   }
 | |
|   if (len == 0) {
 | |
|     return;
 | |
|   }
 | |
|   // upper nibble contains W swap information
 | |
|   if ((colorOrder & 0x0F) > COL_ORDER_MAX) {
 | |
|     return;
 | |
|   }
 | |
|   _mappings[_count].start = start;
 | |
|   _mappings[_count].len = len;
 | |
|   _mappings[_count].colorOrder = colorOrder;
 | |
|   _count++;
 | |
| }
 | |
| 
 | |
| uint8_t IRAM_ATTR ColorOrderMap::getPixelColorOrder(uint16_t pix, uint8_t defaultColorOrder) const {
 | |
|   if (_count > 0) {
 | |
|     // upper nibble contains W swap information
 | |
|     // when ColorOrderMap's upper nibble contains value >0 then swap information is used from it, otherwise global swap is used
 | |
|     for (unsigned i = 0; i < _count; i++) {
 | |
|       if (pix >= _mappings[i].start && pix < (_mappings[i].start + _mappings[i].len)) {
 | |
|         return _mappings[i].colorOrder | ((_mappings[i].colorOrder >> 4) ? 0 : (defaultColorOrder & 0xF0));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return defaultColorOrder;
 | |
| }
 | |
| 
 | |
| 
 | |
| uint32_t Bus::autoWhiteCalc(uint32_t c) {
 | |
|   unsigned aWM = _autoWhiteMode;
 | |
|   if (_gAWM < AW_GLOBAL_DISABLED) aWM = _gAWM;
 | |
|   if (aWM == RGBW_MODE_MANUAL_ONLY) return c;
 | |
|   unsigned w = W(c);
 | |
|   //ignore auto-white calculation if w>0 and mode DUAL (DUAL behaves as BRIGHTER if w==0)
 | |
|   if (w > 0 && aWM == RGBW_MODE_DUAL) return c;
 | |
|   unsigned r = R(c);
 | |
|   unsigned g = G(c);
 | |
|   unsigned b = B(c);
 | |
|   if (aWM == RGBW_MODE_MAX) return RGBW32(r, g, b, r > g ? (r > b ? r : b) : (g > b ? g : b)); // brightest RGB channel
 | |
|   w = r < g ? (r < b ? r : b) : (g < b ? g : b);
 | |
|   if (aWM == RGBW_MODE_AUTO_ACCURATE) { r -= w; g -= w; b -= w; } //subtract w in ACCURATE mode
 | |
|   return RGBW32(r, g, b, w);
 | |
| }
 | |
| 
 | |
| uint8_t *Bus::allocData(size_t size) {
 | |
|   if (_data) free(_data); // should not happen, but for safety
 | |
|   return _data = (uint8_t *)(size>0 ? calloc(size, sizeof(uint8_t)) : nullptr);
 | |
| }
 | |
| 
 | |
| 
 | |
| BusDigital::BusDigital(BusConfig &bc, uint8_t nr, const ColorOrderMap &com)
 | |
| : Bus(bc.type, bc.start, bc.autoWhite, bc.count, bc.reversed, (bc.refreshReq || bc.type == TYPE_TM1814))
 | |
| , _skip(bc.skipAmount) //sacrificial pixels
 | |
| , _colorOrder(bc.colorOrder)
 | |
| , _milliAmpsPerLed(bc.milliAmpsPerLed)
 | |
| , _milliAmpsMax(bc.milliAmpsMax)
 | |
| , _colorOrderMap(com)
 | |
| {
 | |
|   if (!IS_DIGITAL(bc.type) || !bc.count) return;
 | |
|   if (!pinManager.allocatePin(bc.pins[0], true, PinOwner::BusDigital)) return;
 | |
|   _frequencykHz = 0U;
 | |
|   _pins[0] = bc.pins[0];
 | |
|   if (IS_2PIN(bc.type)) {
 | |
|     if (!pinManager.allocatePin(bc.pins[1], true, PinOwner::BusDigital)) {
 | |
|       cleanup();
 | |
|       return;
 | |
|     }
 | |
|     _pins[1] = bc.pins[1];
 | |
|     _frequencykHz = bc.frequency ? bc.frequency : 2000U; // 2MHz clock if undefined
 | |
|   }
 | |
|   _iType = PolyBus::getI(bc.type, _pins, nr);
 | |
|   if (_iType == I_NONE) return;
 | |
|   if (bc.doubleBuffer && !allocData(bc.count * Bus::getNumberOfChannels(bc.type))) return;
 | |
|   //_buffering = bc.doubleBuffer;
 | |
|   uint16_t lenToCreate = bc.count;
 | |
|   if (bc.type == TYPE_WS2812_1CH_X3) lenToCreate = NUM_ICS_WS2812_1CH_3X(bc.count); // only needs a third of "RGB" LEDs for NeoPixelBus
 | |
|   _busPtr = PolyBus::create(_iType, _pins, lenToCreate + _skip, nr, _frequencykHz);
 | |
|   _valid = (_busPtr != nullptr);
 | |
|   DEBUG_PRINTF_P(PSTR("%successfully inited strip %u (len %u) with type %u and pins %u,%u (itype %u). mA=%d/%d\n"), _valid?"S":"Uns", nr, bc.count, bc.type, _pins[0], IS_2PIN(bc.type)?_pins[1]:255, _iType, _milliAmpsPerLed, _milliAmpsMax);
 | |
| }
 | |
| 
 | |
| //fine tune power estimation constants for your setup
 | |
| //you can set it to 0 if the ESP is powered by USB and the LEDs by external
 | |
| #ifndef MA_FOR_ESP
 | |
|   #ifdef ESP8266
 | |
|     #define MA_FOR_ESP         80 //how much mA does the ESP use (Wemos D1 about 80mA)
 | |
|   #else
 | |
|     #define MA_FOR_ESP        120 //how much mA does the ESP use (ESP32 about 120mA)
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
| //DISCLAIMER
 | |
| //The following function attemps to calculate the current LED power usage,
 | |
| //and will limit the brightness to stay below a set amperage threshold.
 | |
| //It is NOT a measurement and NOT guaranteed to stay within the ablMilliampsMax margin.
 | |
| //Stay safe with high amperage and have a reasonable safety margin!
 | |
| //I am NOT to be held liable for burned down garages or houses!
 | |
| 
 | |
| // To disable brightness limiter we either set output max current to 0 or single LED current to 0
 | |
| uint8_t BusDigital::estimateCurrentAndLimitBri() {
 | |
|   bool useWackyWS2815PowerModel = false;
 | |
|   byte actualMilliampsPerLed = _milliAmpsPerLed;
 | |
| 
 | |
|   if (_milliAmpsMax < MA_FOR_ESP/BusManager::getNumBusses() || actualMilliampsPerLed == 0) { //0 mA per LED and too low numbers turn off calculation
 | |
|     return _bri;
 | |
|   }
 | |
| 
 | |
|   if (_milliAmpsPerLed == 255) {
 | |
|     useWackyWS2815PowerModel = true;
 | |
|     actualMilliampsPerLed = 12; // from testing an actual strip
 | |
|   }
 | |
| 
 | |
|   size_t powerBudget = (_milliAmpsMax - MA_FOR_ESP/BusManager::getNumBusses()); //80/120mA for ESP power
 | |
|   if (powerBudget > getLength()) { //each LED uses about 1mA in standby, exclude that from power budget
 | |
|     powerBudget -= getLength();
 | |
|   } else {
 | |
|     powerBudget = 0;
 | |
|   }
 | |
| 
 | |
|   uint32_t busPowerSum = 0;
 | |
|   for (unsigned i = 0; i < getLength(); i++) {  //sum up the usage of each LED
 | |
|     uint32_t c = getPixelColor(i); // always returns original or restored color without brightness scaling
 | |
|     byte r = R(c), g = G(c), b = B(c), w = W(c);
 | |
| 
 | |
|     if (useWackyWS2815PowerModel) { //ignore white component on WS2815 power calculation
 | |
|       busPowerSum += (max(max(r,g),b)) * 3;
 | |
|     } else {
 | |
|       busPowerSum += (r + g + b + w);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (hasWhite()) { //RGBW led total output with white LEDs enabled is still 50mA, so each channel uses less
 | |
|     busPowerSum *= 3;
 | |
|     busPowerSum >>= 2; //same as /= 4
 | |
|   }
 | |
| 
 | |
|   // powerSum has all the values of channels summed (max would be getLength()*765 as white is excluded) so convert to milliAmps
 | |
|   busPowerSum = (busPowerSum * actualMilliampsPerLed) / 765;
 | |
|   _milliAmpsTotal = busPowerSum * _bri / 255;
 | |
| 
 | |
|   uint8_t newBri = _bri;
 | |
|   if (busPowerSum * _bri / 255 > powerBudget) { //scale brightness down to stay in current limit
 | |
|     float scale = (float)(powerBudget * 255) / (float)(busPowerSum * _bri);
 | |
|     if (scale >= 1.0f) return _bri;
 | |
|     _milliAmpsTotal = ceilf((float)_milliAmpsTotal * scale);
 | |
|     uint8_t scaleB = min((int)(scale * 255), 255);
 | |
|     newBri = unsigned(_bri * scaleB) / 256 + 1;
 | |
|   }
 | |
|   return newBri;
 | |
| }
 | |
| 
 | |
| void BusDigital::show() {
 | |
|   _milliAmpsTotal = 0;
 | |
|   if (!_valid) return;
 | |
| 
 | |
|   uint8_t cctWW = 0, cctCW = 0;
 | |
|   unsigned newBri = estimateCurrentAndLimitBri();  // will fill _milliAmpsTotal
 | |
|   if (newBri < _bri) PolyBus::setBrightness(_busPtr, _iType, newBri); // limit brightness to stay within current limits
 | |
| 
 | |
|   if (_data) {
 | |
|     size_t channels = getNumberOfChannels();
 | |
|     int16_t oldCCT = Bus::_cct; // temporarily save bus CCT
 | |
|     for (size_t i=0; i<_len; i++) {
 | |
|       size_t offset = i * channels;
 | |
|       unsigned co = _colorOrderMap.getPixelColorOrder(i+_start, _colorOrder);
 | |
|       uint32_t c;
 | |
|       if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs (_len is always a multiple of 3)
 | |
|         switch (i%3) {
 | |
|           case 0: c = RGBW32(_data[offset]  , _data[offset+1], _data[offset+2], 0); break;
 | |
|           case 1: c = RGBW32(_data[offset-1], _data[offset]  , _data[offset+1], 0); break;
 | |
|           case 2: c = RGBW32(_data[offset-2], _data[offset-1], _data[offset]  , 0); break;
 | |
|         }
 | |
|       } else {
 | |
|         if (hasRGB()) c = RGBW32(_data[offset], _data[offset+1], _data[offset+2], hasWhite() ? _data[offset+3] : 0);
 | |
|         else          c = RGBW32(0, 0, 0, _data[offset]);
 | |
|       }
 | |
|       if (hasCCT()) {
 | |
|         // unfortunately as a segment may span multiple buses or a bus may contain multiple segments and each segment may have different CCT
 | |
|         // we need to extract and appy CCT value for each pixel individually even though all buses share the same _cct variable
 | |
|         // TODO: there is an issue if CCT is calculated from RGB value (_cct==-1), we cannot do that with double buffer
 | |
|         Bus::_cct = _data[offset+channels-1];
 | |
|         Bus::calculateCCT(c, cctWW, cctCW);
 | |
|       }
 | |
|       unsigned pix = i;
 | |
|       if (_reversed) pix = _len - pix -1;
 | |
|       pix += _skip;
 | |
|       PolyBus::setPixelColor(_busPtr, _iType, pix, c, co, (cctCW<<8) | cctWW);
 | |
|     }
 | |
|     #if !defined(STATUSLED) || STATUSLED>=0
 | |
|     if (_skip) PolyBus::setPixelColor(_busPtr, _iType, 0, 0, _colorOrderMap.getPixelColorOrder(_start, _colorOrder)); // paint skipped pixels black
 | |
|     #endif
 | |
|     for (int i=1; i<_skip; i++) PolyBus::setPixelColor(_busPtr, _iType, i, 0, _colorOrderMap.getPixelColorOrder(_start, _colorOrder)); // paint skipped pixels black
 | |
|     Bus::_cct = oldCCT;
 | |
|   } else {
 | |
|     if (newBri < _bri) {
 | |
|       unsigned hwLen = _len;
 | |
|       if (_type == TYPE_WS2812_1CH_X3) hwLen = NUM_ICS_WS2812_1CH_3X(_len); // only needs a third of "RGB" LEDs for NeoPixelBus
 | |
|       for (unsigned i = 0; i < hwLen; i++) {
 | |
|         // use 0 as color order, actual order does not matter here as we just update the channel values as-is
 | |
|         uint32_t c = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, i, 0), _bri);
 | |
|         if (hasCCT()) Bus::calculateCCT(c, cctWW, cctCW); // this will unfortunately corrupt (segment) CCT data on every bus
 | |
|         PolyBus::setPixelColor(_busPtr, _iType, i, c, 0, (cctCW<<8) | cctWW); // repaint all pixels with new brightness
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   PolyBus::show(_busPtr, _iType, !_data); // faster if buffer consistency is not important (use !_buffering this causes 20% FPS drop)
 | |
|   // restore bus brightness to its original value
 | |
|   // this is done right after show, so this is only OK if LED updates are completed before show() returns
 | |
|   // or async show has a separate buffer (ESP32 RMT and I2S are ok)
 | |
|   if (newBri < _bri) PolyBus::setBrightness(_busPtr, _iType, _bri);
 | |
| }
 | |
| 
 | |
| bool BusDigital::canShow() {
 | |
|   if (!_valid) return true;
 | |
|   return PolyBus::canShow(_busPtr, _iType);
 | |
| }
 | |
| 
 | |
| void BusDigital::setBrightness(uint8_t b) {
 | |
|   if (_bri == b) return;
 | |
|   Bus::setBrightness(b);
 | |
|   PolyBus::setBrightness(_busPtr, _iType, b);
 | |
| }
 | |
| 
 | |
| //If LEDs are skipped, it is possible to use the first as a status LED.
 | |
| //TODO only show if no new show due in the next 50ms
 | |
| void BusDigital::setStatusPixel(uint32_t c) {
 | |
|   if (_valid && _skip) {
 | |
|     PolyBus::setPixelColor(_busPtr, _iType, 0, c, _colorOrderMap.getPixelColorOrder(_start, _colorOrder));
 | |
|     if (canShow()) PolyBus::show(_busPtr, _iType);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void IRAM_ATTR BusDigital::setPixelColor(uint16_t pix, uint32_t c) {
 | |
|   if (!_valid) return;
 | |
|   uint8_t cctWW = 0, cctCW = 0;
 | |
|   if (hasWhite()) c = autoWhiteCalc(c);
 | |
|   if (Bus::_cct >= 1900) c = colorBalanceFromKelvin(Bus::_cct, c); //color correction from CCT
 | |
|   if (_data) {
 | |
|     size_t offset = pix * getNumberOfChannels();
 | |
|     if (hasRGB()) {
 | |
|       _data[offset++] = R(c);
 | |
|       _data[offset++] = G(c);
 | |
|       _data[offset++] = B(c);
 | |
|     }
 | |
|     if (hasWhite()) _data[offset++] = W(c);
 | |
|     // unfortunately as a segment may span multiple buses or a bus may contain multiple segments and each segment may have different CCT
 | |
|     // we need to store CCT value for each pixel (if there is a color correction in play, convert K in CCT ratio)
 | |
|     if (hasCCT())   _data[offset]   = Bus::_cct >= 1900 ? (Bus::_cct - 1900) >> 5 : (Bus::_cct < 0 ? 127 : Bus::_cct); // TODO: if _cct == -1 we simply ignore it
 | |
|   } else {
 | |
|     if (_reversed) pix = _len - pix -1;
 | |
|     pix += _skip;
 | |
|     unsigned co = _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder);
 | |
|     if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs
 | |
|       unsigned pOld = pix;
 | |
|       pix = IC_INDEX_WS2812_1CH_3X(pix);
 | |
|       uint32_t cOld = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, pix, co),_bri);
 | |
|       switch (pOld % 3) { // change only the single channel (TODO: this can cause loss because of get/set)
 | |
|         case 0: c = RGBW32(R(cOld), W(c)   , B(cOld), 0); break;
 | |
|         case 1: c = RGBW32(W(c)   , G(cOld), B(cOld), 0); break;
 | |
|         case 2: c = RGBW32(R(cOld), G(cOld), W(c)   , 0); break;
 | |
|       }
 | |
|     }
 | |
|     if (hasCCT()) Bus::calculateCCT(c, cctWW, cctCW);
 | |
|     PolyBus::setPixelColor(_busPtr, _iType, pix, c, co, (cctCW<<8) | cctWW);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // returns original color if global buffering is enabled, else returns lossly restored color from bus
 | |
| uint32_t IRAM_ATTR BusDigital::getPixelColor(uint16_t pix) {
 | |
|   if (!_valid) return 0;
 | |
|   if (_data) {
 | |
|     size_t offset = pix * getNumberOfChannels();
 | |
|     uint32_t c;
 | |
|     if (!hasRGB()) {
 | |
|       c = RGBW32(_data[offset], _data[offset], _data[offset], _data[offset]);
 | |
|     } else {
 | |
|       c = RGBW32(_data[offset], _data[offset+1], _data[offset+2], hasWhite() ? _data[offset+3] : 0);
 | |
|     }
 | |
|     return c;
 | |
|   } else {
 | |
|     if (_reversed) pix = _len - pix -1;
 | |
|     pix += _skip;
 | |
|     unsigned co = _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder);
 | |
|     uint32_t c = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, (_type==TYPE_WS2812_1CH_X3) ? IC_INDEX_WS2812_1CH_3X(pix) : pix, co),_bri);
 | |
|     if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs
 | |
|       unsigned r = R(c);
 | |
|       unsigned g = _reversed ? B(c) : G(c); // should G and B be switched if _reversed?
 | |
|       unsigned b = _reversed ? G(c) : B(c);
 | |
|       switch (pix % 3) { // get only the single channel
 | |
|         case 0: c = RGBW32(g, g, g, g); break;
 | |
|         case 1: c = RGBW32(r, r, r, r); break;
 | |
|         case 2: c = RGBW32(b, b, b, b); break;
 | |
|       }
 | |
|     }
 | |
|     return c;
 | |
|   }
 | |
| }
 | |
| 
 | |
| uint8_t BusDigital::getPins(uint8_t* pinArray) {
 | |
|   unsigned numPins = IS_2PIN(_type) ? 2 : 1;
 | |
|   for (unsigned i = 0; i < numPins; i++) pinArray[i] = _pins[i];
 | |
|   return numPins;
 | |
| }
 | |
| 
 | |
| void BusDigital::setColorOrder(uint8_t colorOrder) {
 | |
|   // upper nibble contains W swap information
 | |
|   if ((colorOrder & 0x0F) > 5) return;
 | |
|   _colorOrder = colorOrder;
 | |
| }
 | |
| 
 | |
| void BusDigital::reinit() {
 | |
|   if (!_valid) return;
 | |
|   PolyBus::begin(_busPtr, _iType, _pins);
 | |
| }
 | |
| 
 | |
| void BusDigital::cleanup() {
 | |
|   DEBUG_PRINTLN(F("Digital Cleanup."));
 | |
|   PolyBus::cleanup(_busPtr, _iType);
 | |
|   _iType = I_NONE;
 | |
|   _valid = false;
 | |
|   _busPtr = nullptr;
 | |
|   if (_data != nullptr) freeData();
 | |
|   pinManager.deallocatePin(_pins[1], PinOwner::BusDigital);
 | |
|   pinManager.deallocatePin(_pins[0], PinOwner::BusDigital);
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef ESP8266
 | |
|   // 1 MHz clock
 | |
|   #define CLOCK_FREQUENCY 1000000UL
 | |
| #else
 | |
|   // Use XTAL clock if possible to avoid timer frequency error when setting APB clock < 80 Mhz
 | |
|   // https://github.com/espressif/arduino-esp32/blob/2.0.2/cores/esp32/esp32-hal-ledc.c
 | |
|   #ifdef SOC_LEDC_SUPPORT_XTAL_CLOCK
 | |
|     #define CLOCK_FREQUENCY 40000000UL
 | |
|   #else
 | |
|     #define CLOCK_FREQUENCY 80000000UL
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef ESP8266
 | |
|   #define MAX_BIT_WIDTH 10
 | |
| #else
 | |
|   #ifdef SOC_LEDC_TIMER_BIT_WIDE_NUM
 | |
|     // C6/H2/P4: 20 bit, S2/S3/C2/C3: 14 bit
 | |
|     #define MAX_BIT_WIDTH SOC_LEDC_TIMER_BIT_WIDE_NUM 
 | |
|   #else
 | |
|     // ESP32: 20 bit (but in reality we would never go beyond 16 bit as the frequency would be to low)
 | |
|     #define MAX_BIT_WIDTH 20
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
| BusPwm::BusPwm(BusConfig &bc)
 | |
| : Bus(bc.type, bc.start, bc.autoWhite, 1, bc.reversed)
 | |
| {
 | |
|   if (!IS_PWM(bc.type)) return;
 | |
|   unsigned numPins = NUM_PWM_PINS(bc.type);
 | |
|   _frequency = bc.frequency ? bc.frequency : WLED_PWM_FREQ;
 | |
|   // duty cycle resolution (_depth) can be extracted from this formula: CLOCK_FREQUENCY > _frequency * 2^_depth
 | |
|   for (_depth = MAX_BIT_WIDTH; _depth > 8; _depth--) if (((CLOCK_FREQUENCY/_frequency) >> _depth) > 0) break;
 | |
| 
 | |
| #ifdef ESP8266
 | |
|   analogWriteRange((1<<_depth)-1);
 | |
|   analogWriteFreq(_frequency);
 | |
| #else
 | |
|   _ledcStart = pinManager.allocateLedc(numPins);
 | |
|   if (_ledcStart == 255) { //no more free LEDC channels
 | |
|     deallocatePins(); return;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   for (unsigned i = 0; i < numPins; i++) {
 | |
|     uint8_t currentPin = bc.pins[i];
 | |
|     if (!pinManager.allocatePin(currentPin, true, PinOwner::BusPwm)) {
 | |
|       deallocatePins(); return;
 | |
|     }
 | |
|     _pins[i] = currentPin; //store only after allocatePin() succeeds
 | |
|     #ifdef ESP8266
 | |
|     pinMode(_pins[i], OUTPUT);
 | |
|     #else
 | |
|     ledcSetup(_ledcStart + i, _frequency, _depth);
 | |
|     ledcAttachPin(_pins[i], _ledcStart + i);
 | |
|     #endif
 | |
|   }
 | |
|   _data = _pwmdata; // avoid malloc() and use stack
 | |
|   _valid = true;
 | |
|   DEBUG_PRINTF_P(PSTR("%successfully inited PWM strip with type %u, frequency %u, bit depth %u and pins %u,%u,%u,%u,%u\n"), _valid?"S":"Uns", bc.type, _frequency, _depth, _pins[0], _pins[1], _pins[2], _pins[3], _pins[4]);
 | |
| }
 | |
| 
 | |
| void BusPwm::setPixelColor(uint16_t pix, uint32_t c) {
 | |
|   if (pix != 0 || !_valid) return; //only react to first pixel
 | |
|   if (_type != TYPE_ANALOG_3CH) c = autoWhiteCalc(c);
 | |
|   if (Bus::_cct >= 1900 && (_type == TYPE_ANALOG_3CH || _type == TYPE_ANALOG_4CH)) {
 | |
|     c = colorBalanceFromKelvin(Bus::_cct, c); //color correction from CCT
 | |
|   }
 | |
|   uint8_t r = R(c);
 | |
|   uint8_t g = G(c);
 | |
|   uint8_t b = B(c);
 | |
|   uint8_t w = W(c);
 | |
| 
 | |
|   switch (_type) {
 | |
|     case TYPE_ANALOG_1CH: //one channel (white), relies on auto white calculation
 | |
|       _data[0] = w;
 | |
|       break;
 | |
|     case TYPE_ANALOG_2CH: //warm white + cold white
 | |
|       if (cctICused) {
 | |
|         _data[0] = w;
 | |
|         _data[1] = Bus::_cct < 0 || Bus::_cct > 255 ? 127 : Bus::_cct;
 | |
|       } else {
 | |
|         Bus::calculateCCT(c, _data[0], _data[1]);
 | |
|       }
 | |
|       break;
 | |
|     case TYPE_ANALOG_5CH: //RGB + warm white + cold white
 | |
|       if (cctICused)
 | |
|         _data[4] = Bus::_cct < 0 || Bus::_cct > 255 ? 127 : Bus::_cct;
 | |
|       else
 | |
|         Bus::calculateCCT(c, w, _data[4]);
 | |
|     case TYPE_ANALOG_4CH: //RGBW
 | |
|       _data[3] = w;
 | |
|     case TYPE_ANALOG_3CH: //standard dumb RGB
 | |
|       _data[0] = r; _data[1] = g; _data[2] = b;
 | |
|       break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //does no index check
 | |
| uint32_t BusPwm::getPixelColor(uint16_t pix) {
 | |
|   if (!_valid) return 0;
 | |
|   // TODO getting the reverse from CCT is involved (a quick approximation when CCT blending is ste to 0 implemented)
 | |
|   switch (_type) {
 | |
|     case TYPE_ANALOG_1CH: //one channel (white), relies on auto white calculation
 | |
|       return RGBW32(0, 0, 0, _data[0]);
 | |
|     case TYPE_ANALOG_2CH: //warm white + cold white
 | |
|       if (cctICused) return RGBW32(0, 0, 0, _data[0]);
 | |
|       else           return RGBW32(0, 0, 0, _data[0] + _data[1]);
 | |
|     case TYPE_ANALOG_5CH: //RGB + warm white + cold white
 | |
|       if (cctICused) return RGBW32(_data[0], _data[1], _data[2], _data[3]);
 | |
|       else           return RGBW32(_data[0], _data[1], _data[2], _data[3] + _data[4]);
 | |
|     case TYPE_ANALOG_4CH: //RGBW
 | |
|       return RGBW32(_data[0], _data[1], _data[2], _data[3]);
 | |
|     case TYPE_ANALOG_3CH: //standard dumb RGB
 | |
|       return RGBW32(_data[0], _data[1], _data[2], 0);
 | |
|   }
 | |
|   return RGBW32(_data[0], _data[0], _data[0], _data[0]);
 | |
| }
 | |
| 
 | |
| void BusPwm::show() {
 | |
|   if (!_valid) return;
 | |
|   unsigned numPins = NUM_PWM_PINS(_type);
 | |
|   unsigned maxBri = (1<<_depth) - 1;
 | |
|   // use CIE brightness formula
 | |
|   unsigned pwmBri = (unsigned)_bri * 100;  
 | |
|   if(pwmBri < 2040) pwmBri = ((pwmBri << _depth) + 115043) / 230087; //adding '0.5' before division for correct rounding
 | |
|   else {  
 | |
|     pwmBri += 4080;
 | |
|     float temp = (float)pwmBri / 29580;
 | |
|     temp = temp * temp * temp * (1<<_depth) - 1; 
 | |
|     pwmBri = (unsigned)temp;
 | |
|   }
 | |
|   for (unsigned i = 0; i < numPins; i++) {
 | |
|     unsigned scaled = (_data[i] * pwmBri) / 255;
 | |
|     if (_reversed) scaled = maxBri - scaled;
 | |
|     #ifdef ESP8266
 | |
|     analogWrite(_pins[i], scaled);
 | |
|     #else
 | |
|     ledcWrite(_ledcStart + i, scaled);
 | |
|     #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| uint8_t BusPwm::getPins(uint8_t* pinArray) {
 | |
|   if (!_valid) return 0;
 | |
|   unsigned numPins = NUM_PWM_PINS(_type);
 | |
|   for (unsigned i = 0; i < numPins; i++) {
 | |
|     pinArray[i] = _pins[i];
 | |
|   }
 | |
|   return numPins;
 | |
| }
 | |
| 
 | |
| void BusPwm::deallocatePins() {
 | |
|   unsigned numPins = NUM_PWM_PINS(_type);
 | |
|   for (unsigned i = 0; i < numPins; i++) {
 | |
|     pinManager.deallocatePin(_pins[i], PinOwner::BusPwm);
 | |
|     if (!pinManager.isPinOk(_pins[i])) continue;
 | |
|     #ifdef ESP8266
 | |
|     digitalWrite(_pins[i], LOW); //turn off PWM interrupt
 | |
|     #else
 | |
|     if (_ledcStart < 16) ledcDetachPin(_pins[i]);
 | |
|     #endif
 | |
|   }
 | |
|   #ifdef ARDUINO_ARCH_ESP32
 | |
|   pinManager.deallocateLedc(_ledcStart, numPins);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| BusOnOff::BusOnOff(BusConfig &bc)
 | |
| : Bus(bc.type, bc.start, bc.autoWhite, 1, bc.reversed)
 | |
| , _onoffdata(0)
 | |
| {
 | |
|   if (bc.type != TYPE_ONOFF) return;
 | |
| 
 | |
|   uint8_t currentPin = bc.pins[0];
 | |
|   if (!pinManager.allocatePin(currentPin, true, PinOwner::BusOnOff)) {
 | |
|     return;
 | |
|   }
 | |
|   _pin = currentPin; //store only after allocatePin() succeeds
 | |
|   pinMode(_pin, OUTPUT);
 | |
|   _data = &_onoffdata; // avoid malloc() and use stack
 | |
|   _valid = true;
 | |
|   DEBUG_PRINTF_P(PSTR("%successfully inited On/Off strip with pin %u\n"), _valid?"S":"Uns", _pin);
 | |
| }
 | |
| 
 | |
| void BusOnOff::setPixelColor(uint16_t pix, uint32_t c) {
 | |
|   if (pix != 0 || !_valid) return; //only react to first pixel
 | |
|   c = autoWhiteCalc(c);
 | |
|   uint8_t r = R(c);
 | |
|   uint8_t g = G(c);
 | |
|   uint8_t b = B(c);
 | |
|   uint8_t w = W(c);
 | |
|   _data[0] = bool(r|g|b|w) && bool(_bri) ? 0xFF : 0;
 | |
| }
 | |
| 
 | |
| uint32_t BusOnOff::getPixelColor(uint16_t pix) {
 | |
|   if (!_valid) return 0;
 | |
|   return RGBW32(_data[0], _data[0], _data[0], _data[0]);
 | |
| }
 | |
| 
 | |
| void BusOnOff::show() {
 | |
|   if (!_valid) return;
 | |
|   digitalWrite(_pin, _reversed ? !(bool)_data[0] : (bool)_data[0]);
 | |
| }
 | |
| 
 | |
| uint8_t BusOnOff::getPins(uint8_t* pinArray) {
 | |
|   if (!_valid) return 0;
 | |
|   pinArray[0] = _pin;
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| BusNetwork::BusNetwork(BusConfig &bc)
 | |
| : Bus(bc.type, bc.start, bc.autoWhite, bc.count)
 | |
| , _broadcastLock(false)
 | |
| {
 | |
|   switch (bc.type) {
 | |
|     case TYPE_NET_ARTNET_RGB:
 | |
|       _rgbw = false;
 | |
|       _UDPtype = 2;
 | |
|       break;
 | |
|     case TYPE_NET_ARTNET_RGBW:
 | |
|       _rgbw = true;
 | |
|       _UDPtype = 2;
 | |
|       break;
 | |
|     case TYPE_NET_E131_RGB:
 | |
|       _rgbw = false;
 | |
|       _UDPtype = 1;
 | |
|       break;
 | |
|     default: // TYPE_NET_DDP_RGB / TYPE_NET_DDP_RGBW
 | |
|       _rgbw = bc.type == TYPE_NET_DDP_RGBW;
 | |
|       _UDPtype = 0;
 | |
|       break;
 | |
|   }
 | |
|   _UDPchannels = _rgbw ? 4 : 3;
 | |
|   _client = IPAddress(bc.pins[0],bc.pins[1],bc.pins[2],bc.pins[3]);
 | |
|   _valid = (allocData(_len * _UDPchannels) != nullptr);
 | |
|   DEBUG_PRINTF_P(PSTR("%successfully inited virtual strip with type %u and IP %u.%u.%u.%u\n"), _valid?"S":"Uns", bc.type, bc.pins[0], bc.pins[1], bc.pins[2], bc.pins[3]);
 | |
| }
 | |
| 
 | |
| void BusNetwork::setPixelColor(uint16_t pix, uint32_t c) {
 | |
|   if (!_valid || pix >= _len) return;
 | |
|   if (_rgbw) c = autoWhiteCalc(c);
 | |
|   if (Bus::_cct >= 1900) c = colorBalanceFromKelvin(Bus::_cct, c); //color correction from CCT
 | |
|   unsigned offset = pix * _UDPchannels;
 | |
|   _data[offset]   = R(c);
 | |
|   _data[offset+1] = G(c);
 | |
|   _data[offset+2] = B(c);
 | |
|   if (_rgbw) _data[offset+3] = W(c);
 | |
| }
 | |
| 
 | |
| uint32_t BusNetwork::getPixelColor(uint16_t pix) {
 | |
|   if (!_valid || pix >= _len) return 0;
 | |
|   unsigned offset = pix * _UDPchannels;
 | |
|   return RGBW32(_data[offset], _data[offset+1], _data[offset+2], (_rgbw ? _data[offset+3] : 0));
 | |
| }
 | |
| 
 | |
| void BusNetwork::show() {
 | |
|   if (!_valid || !canShow()) return;
 | |
|   _broadcastLock = true;
 | |
|   realtimeBroadcast(_UDPtype, _client, _len, _data, _bri, _rgbw);
 | |
|   _broadcastLock = false;
 | |
| }
 | |
| 
 | |
| uint8_t BusNetwork::getPins(uint8_t* pinArray) {
 | |
|   for (unsigned i = 0; i < 4; i++) {
 | |
|     pinArray[i] = _client[i];
 | |
|   }
 | |
|   return 4;
 | |
| }
 | |
| 
 | |
| void BusNetwork::cleanup() {
 | |
|   _type = I_NONE;
 | |
|   _valid = false;
 | |
|   freeData();
 | |
| }
 | |
| 
 | |
| 
 | |
| //utility to get the approx. memory usage of a given BusConfig
 | |
| uint32_t BusManager::memUsage(BusConfig &bc) {
 | |
|   if (bc.type == TYPE_ONOFF || IS_PWM(bc.type)) return 5;
 | |
| 
 | |
|   unsigned len = bc.count + bc.skipAmount;
 | |
|   unsigned channels = Bus::getNumberOfChannels(bc.type);
 | |
|   unsigned multiplier = 1;
 | |
|   if (IS_DIGITAL(bc.type)) { // digital types
 | |
|     if (IS_16BIT(bc.type)) len *= 2; // 16-bit LEDs
 | |
|     #ifdef ESP8266
 | |
|       if (bc.pins[0] == 3) { //8266 DMA uses 5x the mem
 | |
|         multiplier = 5;
 | |
|       }
 | |
|     #else //ESP32 RMT uses double buffer, parallel I2S uses 8x buffer (3 times)
 | |
|       multiplier = PolyBus::isParallelI2S1Output() ? 24 : 2;
 | |
|     #endif
 | |
|   }
 | |
|   return (len * multiplier + bc.doubleBuffer * (bc.count + bc.skipAmount)) * channels;
 | |
| }
 | |
| 
 | |
| uint32_t BusManager::memUsage(unsigned maxChannels, unsigned maxCount, unsigned minBuses) {
 | |
|   //ESP32 RMT uses double buffer, parallel I2S uses 8x buffer (3 times)
 | |
|   unsigned multiplier = PolyBus::isParallelI2S1Output() ? 3 : 2;
 | |
|   return (maxChannels * maxCount * minBuses * multiplier);
 | |
| }
 | |
| 
 | |
| int BusManager::add(BusConfig &bc) {
 | |
|   if (getNumBusses() - getNumVirtualBusses() >= WLED_MAX_BUSSES) return -1;
 | |
|   if (IS_VIRTUAL(bc.type)) {
 | |
|     busses[numBusses] = new BusNetwork(bc);
 | |
|   } else if (IS_DIGITAL(bc.type)) {
 | |
|     busses[numBusses] = new BusDigital(bc, numBusses, colorOrderMap);
 | |
|   } else if (bc.type == TYPE_ONOFF) {
 | |
|     busses[numBusses] = new BusOnOff(bc);
 | |
|   } else {
 | |
|     busses[numBusses] = new BusPwm(bc);
 | |
|   }
 | |
|   return numBusses++;
 | |
| }
 | |
| 
 | |
| void BusManager::useParallelOutput(void) {
 | |
|   _parallelOutputs = 8; // hardcoded since we use NPB I2S x8 methods
 | |
|   PolyBus::setParallelI2S1Output();
 | |
| }
 | |
| 
 | |
| //do not call this method from system context (network callback)
 | |
| void BusManager::removeAll() {
 | |
|   DEBUG_PRINTLN(F("Removing all."));
 | |
|   //prevents crashes due to deleting busses while in use.
 | |
|   while (!canAllShow()) yield();
 | |
|   for (unsigned i = 0; i < numBusses; i++) delete busses[i];
 | |
|   numBusses = 0;
 | |
|   _parallelOutputs = 1;
 | |
|   PolyBus::setParallelI2S1Output(false);
 | |
| }
 | |
| 
 | |
| #ifdef ESP32_DATA_IDLE_HIGH
 | |
| // #2478
 | |
| // If enabled, RMT idle level is set to HIGH when off
 | |
| // to prevent leakage current when using an N-channel MOSFET to toggle LED power
 | |
| void BusManager::esp32RMTInvertIdle() {
 | |
|   bool idle_out;
 | |
|   unsigned rmt = 0;
 | |
|   for (unsigned u = 0; u < numBusses(); u++) {
 | |
|     #if defined(CONFIG_IDF_TARGET_ESP32C3)    // 2 RMT, only has 1 I2S but NPB does not support it ATM
 | |
|       if (u > 1) return;
 | |
|       rmt = u;
 | |
|     #elif defined(CONFIG_IDF_TARGET_ESP32S2)  // 4 RMT, only has 1 I2S bus, supported in NPB
 | |
|       if (u > 3) return;
 | |
|       rmt = u;
 | |
|     #elif defined(CONFIG_IDF_TARGET_ESP32S3)  // 4 RMT, has 2 I2S but NPB does not support them ATM
 | |
|       if (u > 3) return;
 | |
|       rmt = u;
 | |
|     #else
 | |
|       if (u < _parallelOutputs) continue;
 | |
|       if (u >= _parallelOutputs + 8) return; // only 8 RMT channels
 | |
|       rmt = u - _parallelOutputs;
 | |
|     #endif
 | |
|     if (busses[u]->getLength()==0 || !IS_DIGITAL(busses[u]->getType()) || IS_2PIN(busses[u]->getType())) continue;
 | |
|     //assumes that bus number to rmt channel mapping stays 1:1
 | |
|     rmt_channel_t ch = static_cast<rmt_channel_t>(rmt);
 | |
|     rmt_idle_level_t lvl;
 | |
|     rmt_get_idle_level(ch, &idle_out, &lvl);
 | |
|     if (lvl == RMT_IDLE_LEVEL_HIGH) lvl = RMT_IDLE_LEVEL_LOW;
 | |
|     else if (lvl == RMT_IDLE_LEVEL_LOW) lvl = RMT_IDLE_LEVEL_HIGH;
 | |
|     else continue;
 | |
|     rmt_set_idle_level(ch, idle_out, lvl);
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void BusManager::on() {
 | |
|   #ifdef ESP8266
 | |
|   //Fix for turning off onboard LED breaking bus
 | |
|   if (pinManager.getPinOwner(LED_BUILTIN) == PinOwner::BusDigital) {
 | |
|     for (unsigned i = 0; i < numBusses; i++) {
 | |
|       uint8_t pins[2] = {255,255};
 | |
|       if (IS_DIGITAL(busses[i]->getType()) && busses[i]->getPins(pins)) {
 | |
|         if (pins[0] == LED_BUILTIN || pins[1] == LED_BUILTIN) {
 | |
|           BusDigital *bus = static_cast<BusDigital*>(busses[i]);
 | |
|           bus->reinit();
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   #endif
 | |
|   #ifdef ESP32_DATA_IDLE_HIGH
 | |
|   esp32RMTInvertIdle();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void BusManager::off() {
 | |
|   #ifdef ESP8266
 | |
|   // turn off built-in LED if strip is turned off
 | |
|   // this will break digital bus so will need to be re-initialised on On
 | |
|   if (pinManager.getPinOwner(LED_BUILTIN) == PinOwner::BusDigital) {
 | |
|     for (unsigned i = 0; i < numBusses; i++) if (busses[i]->isOffRefreshRequired()) return;
 | |
|     pinMode(LED_BUILTIN, OUTPUT);
 | |
|     digitalWrite(LED_BUILTIN, HIGH);
 | |
|   }
 | |
|   #endif
 | |
|   #ifdef ESP32_DATA_IDLE_HIGH
 | |
|   esp32RMTInvertIdle();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void BusManager::show() {
 | |
|   _milliAmpsUsed = 0;
 | |
|   for (unsigned i = 0; i < numBusses; i++) {
 | |
|     busses[i]->show();
 | |
|     _milliAmpsUsed += busses[i]->getUsedCurrent();
 | |
|   }
 | |
|   if (_milliAmpsUsed) _milliAmpsUsed += MA_FOR_ESP;
 | |
| }
 | |
| 
 | |
| void BusManager::setStatusPixel(uint32_t c) {
 | |
|   for (unsigned i = 0; i < numBusses; i++) {
 | |
|     busses[i]->setStatusPixel(c);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void IRAM_ATTR BusManager::setPixelColor(uint16_t pix, uint32_t c) {
 | |
|   for (unsigned i = 0; i < numBusses; i++) {
 | |
|     unsigned bstart = busses[i]->getStart();
 | |
|     if (pix < bstart || pix >= bstart + busses[i]->getLength()) continue;
 | |
|     busses[i]->setPixelColor(pix - bstart, c);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BusManager::setBrightness(uint8_t b) {
 | |
|   for (unsigned i = 0; i < numBusses; i++) {
 | |
|     busses[i]->setBrightness(b);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BusManager::setSegmentCCT(int16_t cct, bool allowWBCorrection) {
 | |
|   if (cct > 255) cct = 255;
 | |
|   if (cct >= 0) {
 | |
|     //if white balance correction allowed, save as kelvin value instead of 0-255
 | |
|     if (allowWBCorrection) cct = 1900 + (cct << 5);
 | |
|   } else cct = -1; // will use kelvin approximation from RGB
 | |
|   Bus::setCCT(cct);
 | |
| }
 | |
| 
 | |
| uint32_t BusManager::getPixelColor(uint16_t pix) {
 | |
|   for (unsigned i = 0; i < numBusses; i++) {
 | |
|     unsigned bstart = busses[i]->getStart();
 | |
|     if (pix < bstart || pix >= bstart + busses[i]->getLength()) continue;
 | |
|     return busses[i]->getPixelColor(pix - bstart);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool BusManager::canAllShow() {
 | |
|   for (unsigned i = 0; i < numBusses; i++) {
 | |
|     if (!busses[i]->canShow()) return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Bus* BusManager::getBus(uint8_t busNr) {
 | |
|   if (busNr >= numBusses) return nullptr;
 | |
|   return busses[busNr];
 | |
| }
 | |
| 
 | |
| //semi-duplicate of strip.getLengthTotal() (though that just returns strip._length, calculated in finalizeInit())
 | |
| uint16_t BusManager::getTotalLength() {
 | |
|   unsigned len = 0;
 | |
|   for (unsigned i=0; i<numBusses; i++) len += busses[i]->getLength();
 | |
|   return len;
 | |
| }
 | |
| 
 | |
| bool PolyBus::useParallelI2S = false;
 | |
| 
 | |
| // Bus static member definition
 | |
| int16_t Bus::_cct = -1;
 | |
| uint8_t Bus::_cctBlend = 0;
 | |
| uint8_t Bus::_gAWM = 255;
 | |
| 
 | |
| uint16_t BusDigital::_milliAmpsTotal = 0;
 | |
| 
 | |
| uint8_t       BusManager::numBusses = 0;
 | |
| Bus*          BusManager::busses[WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES];
 | |
| ColorOrderMap BusManager::colorOrderMap = {};
 | |
| uint16_t      BusManager::_milliAmpsUsed = 0;
 | |
| uint16_t      BusManager::_milliAmpsMax = ABL_MILLIAMPS_DEFAULT;
 | |
| uint8_t       BusManager::_parallelOutputs = 1;
 | 
