 d5d7fde30f
			
		
	
	d5d7fde30f
	
	
	
		
			
			* updated color scaling to preserve hue at low brightness resulting in much better colors * replace NPBlg with NPB, moved brightness scaling to bus manager * improved gamma table calculation: fixed mismatch in inverting gamma table calculation: inversion should now be as good as it gets * code cleanup, fixed gamma being applied in unnecessary places Improvements to ABL handling: - removed strip level handling, ist now all done on bus level - limiter now respects pixel mapping - proper handling of white channel - improved current estimation - current is now always correctly reported to UI - minimal FPS impact if the ABL is not limiting but slighly higher impact for global ABL limit due to double-scaling - moved brightness scaling to BusDigital - created new header file colors.h to be able to access color functions in bus-manager. - updated colo_fade() with better video scaling to preserve hue's at low brightness - added IRAM_ATTR to color_fade (negligible speed impact when compared to inline and benefits other functions) - added IRAM_ATTR to color_blend as it is used a lot throughout the code, did not test speed impact but adding it to color_fade made it almost on-par with an inlined function Additional changes: - fixes for properly handling `scaledBri()` (by @blazoncek) - also use bit-shift instead of division in blending for ESP8266 - improvements for faster "softlight" calculation in blending - changed some variables to uint8_t to maybe let the compiler optimize better, uint8_t can be faster if read, store and set are all done in uint8_t, which is the case in the ones I changed - various minor code formatting changes
		
			
				
	
	
		
			1085 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1085 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Class implementation for addressing various light types
 | |
|  */
 | |
| 
 | |
| #include <Arduino.h>
 | |
| #include <IPAddress.h>
 | |
| #ifdef ARDUINO_ARCH_ESP32
 | |
| #include <ESPmDNS.h>
 | |
| #include "src/dependencies/network/Network.h" // for isConnected() (& WiFi)
 | |
| #include "driver/ledc.h"
 | |
| #include "soc/ledc_struct.h"
 | |
|   #if !(defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3))
 | |
|     #define LEDC_MUTEX_LOCK()    do {} while (xSemaphoreTake(_ledc_sys_lock, portMAX_DELAY) != pdPASS)
 | |
|     #define LEDC_MUTEX_UNLOCK()  xSemaphoreGive(_ledc_sys_lock)
 | |
|     extern xSemaphoreHandle _ledc_sys_lock;
 | |
|   #else
 | |
|     #define LEDC_MUTEX_LOCK()
 | |
|     #define LEDC_MUTEX_UNLOCK()
 | |
|   #endif
 | |
| #endif
 | |
| #ifdef ESP8266
 | |
| #include "core_esp8266_waveform.h"
 | |
| #endif
 | |
| #include "const.h"
 | |
| #include "colors.h"
 | |
| #include "pin_manager.h"
 | |
| #include "bus_manager.h"
 | |
| #include "bus_wrapper.h"
 | |
| #include <bits/unique_ptr.h>
 | |
| 
 | |
| extern char cmDNS[];
 | |
| extern bool cctICused;
 | |
| extern bool useParallelI2S;
 | |
| 
 | |
| //colors.cpp
 | |
| uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
 | |
| 
 | |
| //udp.cpp
 | |
| uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, const byte *buffer, uint8_t bri=255, bool isRGBW=false);
 | |
| 
 | |
| //util.cpp
 | |
| // PSRAM allocation wrappers
 | |
| #if !defined(ESP8266) && !defined(CONFIG_IDF_TARGET_ESP32C3)
 | |
| extern "C" {
 | |
|   void *p_malloc(size_t);           // prefer PSRAM over DRAM
 | |
|   void *p_calloc(size_t, size_t);   // prefer PSRAM over DRAM
 | |
|   void *p_realloc(void *, size_t);  // prefer PSRAM over DRAM
 | |
|   void *p_realloc_malloc(void *ptr, size_t size); // realloc with malloc fallback, prefer PSRAM over DRAM
 | |
|   inline void p_free(void *ptr) { heap_caps_free(ptr); }
 | |
|   void *d_malloc(size_t);           // prefer DRAM over PSRAM
 | |
|   void *d_calloc(size_t, size_t);   // prefer DRAM over PSRAM
 | |
|   void *d_realloc(void *, size_t);  // prefer DRAM over PSRAM
 | |
|   void *d_realloc_malloc(void *ptr, size_t size); // realloc with malloc fallback, prefer DRAM over PSRAM
 | |
|   inline void d_free(void *ptr) { heap_caps_free(ptr); }
 | |
| }
 | |
| #else
 | |
| extern "C" {
 | |
|   void *realloc_malloc(void *ptr, size_t size);
 | |
| }
 | |
| #define p_malloc malloc
 | |
| #define p_calloc calloc
 | |
| #define p_realloc realloc
 | |
| #define p_realloc_malloc realloc_malloc
 | |
| #define p_free free
 | |
| #define d_malloc malloc
 | |
| #define d_calloc calloc
 | |
| #define d_realloc realloc
 | |
| #define d_realloc_malloc realloc_malloc
 | |
| #define d_free free
 | |
| #endif
 | |
| 
 | |
| //color mangling macros
 | |
| #define RGBW32(r,g,b,w) (uint32_t((byte(w) << 24) | (byte(r) << 16) | (byte(g) << 8) | (byte(b))))
 | |
| #define R(c) (byte((c) >> 16))
 | |
| #define G(c) (byte((c) >> 8))
 | |
| #define B(c) (byte(c))
 | |
| #define W(c) (byte((c) >> 24))
 | |
| 
 | |
| 
 | |
| static ColorOrderMap _colorOrderMap = {};
 | |
| 
 | |
| bool ColorOrderMap::add(uint16_t start, uint16_t len, uint8_t colorOrder) {
 | |
|   if (count() >= WLED_MAX_COLOR_ORDER_MAPPINGS || len == 0 || (colorOrder & 0x0F) > COL_ORDER_MAX) return false; // upper nibble contains W swap information
 | |
|   _mappings.push_back({start,len,colorOrder});
 | |
|   DEBUGBUS_PRINTF_P(PSTR("Bus: Add COM (%d,%d,%d)\n"), (int)start, (int)len, (int)colorOrder);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| uint8_t IRAM_ATTR ColorOrderMap::getPixelColorOrder(uint16_t pix, uint8_t defaultColorOrder) const {
 | |
|   // upper nibble contains W swap information
 | |
|   // when ColorOrderMap's upper nibble contains value >0 then swap information is used from it, otherwise global swap is used
 | |
|   for (const auto& map : _mappings) {
 | |
|     if (pix >= map.start && pix < (map.start + map.len)) return map.colorOrder | ((map.colorOrder >> 4) ? 0 : (defaultColorOrder & 0xF0));
 | |
|   }
 | |
|   return defaultColorOrder;
 | |
| }
 | |
| 
 | |
| 
 | |
| void Bus::calculateCCT(uint32_t c, uint8_t &ww, uint8_t &cw) {
 | |
|   unsigned cct = 0; //0 - full warm white, 255 - full cold white
 | |
|   unsigned w = W(c);
 | |
| 
 | |
|   if (_cct > -1) {                                    // using RGB?
 | |
|     if (_cct >= 1900)    cct = (_cct - 1900) >> 5;    // convert K in relative format
 | |
|     else if (_cct < 256) cct = _cct;                  // already relative
 | |
|   } else {
 | |
|     cct = (approximateKelvinFromRGB(c) - 1900) >> 5;  // convert K (from RGB value) to relative format
 | |
|   }
 | |
| 
 | |
|   //0 - linear (CCT 127 = 50% warm, 50% cold), 127 - additive CCT blending (CCT 127 = 100% warm, 100% cold)
 | |
|   if (cct       < _cctBlend) ww = 255;
 | |
|   else                       ww = ((255-cct) * 255) / (255 - _cctBlend);
 | |
|   if ((255-cct) < _cctBlend) cw = 255;
 | |
|   else                       cw = (cct * 255) / (255 - _cctBlend);
 | |
| 
 | |
|   ww = (w * ww) / 255; //brightness scaling
 | |
|   cw = (w * cw) / 255;
 | |
| }
 | |
| 
 | |
| uint32_t Bus::autoWhiteCalc(uint32_t c) const {
 | |
|   unsigned aWM = _autoWhiteMode;
 | |
|   if (_gAWM < AW_GLOBAL_DISABLED) aWM = _gAWM;
 | |
|   if (aWM == RGBW_MODE_MANUAL_ONLY) return c;
 | |
|   unsigned w = W(c);
 | |
|   //ignore auto-white calculation if w>0 and mode DUAL (DUAL behaves as BRIGHTER if w==0)
 | |
|   if (w > 0 && aWM == RGBW_MODE_DUAL) return c;
 | |
|   unsigned r = R(c);
 | |
|   unsigned g = G(c);
 | |
|   unsigned b = B(c);
 | |
|   if (aWM == RGBW_MODE_MAX) return RGBW32(r, g, b, r > g ? (r > b ? r : b) : (g > b ? g : b)); // brightest RGB channel
 | |
|   w = r < g ? (r < b ? r : b) : (g < b ? g : b);
 | |
|   if (aWM == RGBW_MODE_AUTO_ACCURATE) { r -= w; g -= w; b -= w; } //subtract w in ACCURATE mode
 | |
|   return RGBW32(r, g, b, w);
 | |
| }
 | |
| 
 | |
| 
 | |
| BusDigital::BusDigital(const BusConfig &bc, uint8_t nr)
 | |
| : Bus(bc.type, bc.start, bc.autoWhite, bc.count, bc.reversed, (bc.refreshReq || bc.type == TYPE_TM1814))
 | |
| , _skip(bc.skipAmount) //sacrificial pixels
 | |
| , _colorOrder(bc.colorOrder)
 | |
| , _milliAmpsPerLed(bc.milliAmpsPerLed)
 | |
| , _milliAmpsMax(bc.milliAmpsMax)
 | |
| {
 | |
|   DEBUGBUS_PRINTLN(F("Bus: Creating digital bus."));
 | |
|   if (!isDigital(bc.type) || !bc.count) { DEBUGBUS_PRINTLN(F("Not digial or empty bus!")); return; }
 | |
|   if (!PinManager::allocatePin(bc.pins[0], true, PinOwner::BusDigital)) { DEBUGBUS_PRINTLN(F("Pin 0 allocated!")); return; }
 | |
|   _frequencykHz = 0U;
 | |
|   _colorSum = 0;
 | |
|   _pins[0] = bc.pins[0];
 | |
|   if (is2Pin(bc.type)) {
 | |
|     if (!PinManager::allocatePin(bc.pins[1], true, PinOwner::BusDigital)) {
 | |
|       cleanup();
 | |
|       DEBUGBUS_PRINTLN(F("Pin 1 allocated!"));
 | |
|       return;
 | |
|     }
 | |
|     _pins[1] = bc.pins[1];
 | |
|     _frequencykHz = bc.frequency ? bc.frequency : 2000U; // 2MHz clock if undefined
 | |
|   }
 | |
|   _iType = PolyBus::getI(bc.type, _pins, nr);
 | |
|   if (_iType == I_NONE) { DEBUGBUS_PRINTLN(F("Incorrect iType!")); return; }
 | |
|   _hasRgb = hasRGB(bc.type);
 | |
|   _hasWhite = hasWhite(bc.type);
 | |
|   _hasCCT = hasCCT(bc.type);
 | |
|   uint16_t lenToCreate = bc.count;
 | |
|   if (bc.type == TYPE_WS2812_1CH_X3) lenToCreate = NUM_ICS_WS2812_1CH_3X(bc.count); // only needs a third of "RGB" LEDs for NeoPixelBus
 | |
|   _busPtr = PolyBus::create(_iType, _pins, lenToCreate + _skip, nr);
 | |
|   _valid = (_busPtr != nullptr) && bc.count > 0;
 | |
|   // fix for wled#4759
 | |
|   if (_valid) for (unsigned i = 0; i < _skip; i++) {
 | |
|     PolyBus::setPixelColor(_busPtr, _iType, i, 0, COL_ORDER_GRB); // set sacrificial pixels to black (CO does not matter here)
 | |
|   }
 | |
|   DEBUGBUS_PRINTF_P(PSTR("Bus: %successfully inited #%u (len:%u, type:%u (RGB:%d, W:%d, CCT:%d), pins:%u,%u [itype:%u] mA=%d/%d)\n"),
 | |
|     _valid?"S":"Uns",
 | |
|     (int)nr,
 | |
|     (int)bc.count,
 | |
|     (int)bc.type,
 | |
|     (int)_hasRgb, (int)_hasWhite, (int)_hasCCT,
 | |
|     (unsigned)_pins[0], is2Pin(bc.type)?(unsigned)_pins[1]:255U,
 | |
|     (unsigned)_iType,
 | |
|     (int)_milliAmpsPerLed, (int)_milliAmpsMax
 | |
|   );
 | |
| }
 | |
| 
 | |
| //DISCLAIMER
 | |
| //The following function attemps to calculate the current LED power usage,
 | |
| //and will limit the brightness to stay below a set amperage threshold.
 | |
| //It is NOT a measurement and NOT guaranteed to stay within the ablMilliampsMax margin.
 | |
| //Stay safe with high amperage and have a reasonable safety margin!
 | |
| //I am NOT to be held liable for burned down garages or houses!
 | |
| 
 | |
| // note on ABL implementation:
 | |
| // ABL is set up in finalizeInit()
 | |
| // scaled color channels are summed in BusDigital::setPixelColor()
 | |
| // the used current is estimated and limited in BusManager::show()
 | |
| // if limit is set too low, brightness is limited to 1 to at least show some light
 | |
| // to disable brightness limiter for a bus, set LED current to 0
 | |
| 
 | |
| void BusDigital::estimateCurrent() {
 | |
|   uint32_t actualMilliampsPerLed = _milliAmpsPerLed;
 | |
|   if (_milliAmpsPerLed == 255) {
 | |
|     // use wacky WS2815 power model, see WLED issue #549
 | |
|     _colorSum *= 3; // sum is sum of max value for each color, need to multiply by three to account for clrUnitsPerChannel being 3*255
 | |
|     actualMilliampsPerLed = 12; // from testing an actual strip
 | |
|   }
 | |
|   // _colorSum has all the values of color channels summed, max would be getLength()*(3*255 + (255 if hasWhite()): convert to milliAmps
 | |
|   uint32_t clrUnitsPerChannel = hasWhite() ? 4*255 : 3*255;
 | |
|   _milliAmpsTotal = ((uint64_t)_colorSum * actualMilliampsPerLed) / clrUnitsPerChannel + getLength(); // add 1mA standby current per LED to total (WS2812: ~0.7mA, WS2815: ~2mA)
 | |
| }
 | |
| 
 | |
| void BusDigital::applyBriLimit(uint8_t newBri) {
 | |
|   // a newBri of 0 means calculate per-bus brightness limit
 | |
|   if (newBri == 0) {
 | |
|     if (_milliAmpsLimit == 0 || _milliAmpsTotal == 0) return; // ABL not used for this bus
 | |
|     newBri = 255;
 | |
| 
 | |
|     if (_milliAmpsLimit > getLength()) { // each LED uses about 1mA in standby
 | |
|       if (_milliAmpsTotal > _milliAmpsLimit) {
 | |
|         // scale brightness down to stay in current limit
 | |
|         newBri = ((uint32_t)_milliAmpsLimit * 255) / _milliAmpsTotal + 1; // +1 to avoid 0 brightness
 | |
|         _milliAmpsTotal = _milliAmpsLimit;
 | |
|       }
 | |
|     } else {
 | |
|       newBri = 1; // limit too low, set brightness to 1, this will dim down all colors to minimum since we use video scaling
 | |
|       _milliAmpsTotal = getLength(); // estimate bus current as minimum
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (newBri < 255) {
 | |
|     uint8_t cctWW = 0, cctCW = 0;
 | |
|     unsigned hwLen = _len;
 | |
|     if (_type == TYPE_WS2812_1CH_X3) hwLen = NUM_ICS_WS2812_1CH_3X(_len); // only needs a third of "RGB" LEDs for NeoPixelBus
 | |
|     for (unsigned i = 0; i < hwLen; i++) {
 | |
|       uint8_t co = _colorOrderMap.getPixelColorOrder(i+_start, _colorOrder); // need to revert color order for correct color scaling and CCT calc in case white is swapped
 | |
|       uint32_t c = PolyBus::getPixelColor(_busPtr, _iType, i, co);
 | |
|       c = color_fade(c, newBri, true); // apply additional dimming  note: using inline version is a bit faster but overhead of getPixelColor() dominates the speed impact by far
 | |
|       if (hasCCT()) Bus::calculateCCT(c, cctWW, cctCW);
 | |
|       PolyBus::setPixelColor(_busPtr, _iType, i, c, co, (cctCW<<8) | cctWW); // repaint all pixels with new brightness
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   _colorSum = 0; // reset for next frame
 | |
| }
 | |
| 
 | |
| void BusDigital::show() {
 | |
|   if (!_valid) return;
 | |
|   PolyBus::show(_busPtr, _iType, _skip); // faster if buffer consistency is not important (no skipped LEDs)
 | |
| }
 | |
| 
 | |
| bool BusDigital::canShow() const {
 | |
|   if (!_valid) return true;
 | |
|   return PolyBus::canShow(_busPtr, _iType);
 | |
| }
 | |
| 
 | |
| //If LEDs are skipped, it is possible to use the first as a status LED.
 | |
| //TODO only show if no new show due in the next 50ms
 | |
| void BusDigital::setStatusPixel(uint32_t c) {
 | |
|   if (_valid && _skip) {
 | |
|     PolyBus::setPixelColor(_busPtr, _iType, 0, c, _colorOrderMap.getPixelColorOrder(_start, _colorOrder));
 | |
|     if (canShow()) PolyBus::show(_busPtr, _iType);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void IRAM_ATTR BusDigital::setPixelColor(unsigned pix, uint32_t c) {
 | |
|   if (!_valid) return;
 | |
|   if (hasWhite()) c = autoWhiteCalc(c);
 | |
|   if (Bus::_cct >= 1900) c = colorBalanceFromKelvin(Bus::_cct, c); //color correction from CCT
 | |
|   c = color_fade(c, _bri, true); // apply brightness
 | |
| 
 | |
|   if (BusManager::_useABL) {
 | |
|     // if using ABL, sum all color channels to estimate current and limit brightness in show()
 | |
|     uint8_t r = R(c), g = G(c), b = B(c);
 | |
|     if (_milliAmpsPerLed < 255) { // normal ABL
 | |
|       _colorSum += r + g + b + W(c);
 | |
|     } else { // wacky WS2815 power model, ignore white channel, use max of RGB (issue #549)
 | |
|       _colorSum += ((r > g) ? ((r > b) ? r : b) : ((g > b) ? g : b));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (_reversed) pix = _len - pix -1;
 | |
|   pix += _skip;
 | |
|   const uint8_t co = _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder);
 | |
|   if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs
 | |
|     unsigned pOld = pix;
 | |
|     pix = IC_INDEX_WS2812_1CH_3X(pix);
 | |
|     uint32_t cOld = PolyBus::getPixelColor(_busPtr, _iType, pix, co);
 | |
|     switch (pOld % 3) { // change only the single channel (TODO: this can cause loss because of get/set)
 | |
|       case 0: c = RGBW32(R(cOld), W(c)   , B(cOld), 0); break;
 | |
|       case 1: c = RGBW32(W(c)   , G(cOld), B(cOld), 0); break;
 | |
|       case 2: c = RGBW32(R(cOld), G(cOld), W(c)   , 0); break;
 | |
|     }
 | |
|   }
 | |
|   uint16_t wwcw = 0;
 | |
|   if (hasCCT()) {
 | |
|     uint8_t cctWW = 0, cctCW = 0;
 | |
|     Bus::calculateCCT(c, cctWW, cctCW);
 | |
|     wwcw = (cctCW<<8) | cctWW;
 | |
|     if (_type == TYPE_WS2812_WWA) c = RGBW32(cctWW, cctCW, 0, W(c));
 | |
|   }
 | |
|   PolyBus::setPixelColor(_busPtr, _iType, pix, c, co, wwcw);
 | |
| }
 | |
| 
 | |
| // returns lossly restored color from bus
 | |
| uint32_t IRAM_ATTR BusDigital::getPixelColor(unsigned pix) const {
 | |
|   if (!_valid) return 0;
 | |
|   if (_reversed) pix = _len - pix -1;
 | |
|   pix += _skip;
 | |
|   const uint8_t co = _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder);
 | |
|   uint32_t c = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, (_type==TYPE_WS2812_1CH_X3) ? IC_INDEX_WS2812_1CH_3X(pix) : pix, co),_bri);
 | |
|   if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs
 | |
|     uint8_t r = R(c);
 | |
|     uint8_t g = _reversed ? B(c) : G(c); // should G and B be switched if _reversed?
 | |
|     uint8_t b = _reversed ? G(c) : B(c);
 | |
|     switch (pix % 3) { // get only the single channel
 | |
|       case 0: c = RGBW32(g, g, g, g); break;
 | |
|       case 1: c = RGBW32(r, r, r, r); break;
 | |
|       case 2: c = RGBW32(b, b, b, b); break;
 | |
|     }
 | |
|   }
 | |
|   if (_type == TYPE_WS2812_WWA) {
 | |
|     uint8_t w = R(c) | G(c);
 | |
|     c = RGBW32(w, w, 0, w);
 | |
|   }
 | |
|   return c;
 | |
| }
 | |
| 
 | |
| size_t BusDigital::getPins(uint8_t* pinArray) const {
 | |
|   unsigned numPins = is2Pin(_type) + 1;
 | |
|   if (pinArray) for (unsigned i = 0; i < numPins; i++) pinArray[i] = _pins[i];
 | |
|   return numPins;
 | |
| }
 | |
| 
 | |
| size_t BusDigital::getBusSize() const {
 | |
|   return sizeof(BusDigital) + (isOk() ? PolyBus::getDataSize(_busPtr, _iType) : 0);
 | |
| }
 | |
| 
 | |
| void BusDigital::setColorOrder(uint8_t colorOrder) {
 | |
|   // upper nibble contains W swap information
 | |
|   if ((colorOrder & 0x0F) > 5) return;
 | |
|   _colorOrder = colorOrder;
 | |
| }
 | |
| 
 | |
| // credit @willmmiles & @netmindz https://github.com/wled/WLED/pull/4056
 | |
| std::vector<LEDType> BusDigital::getLEDTypes() {
 | |
|   return {
 | |
|     {TYPE_WS2812_RGB,    "D",  PSTR("WS281x")},
 | |
|     {TYPE_SK6812_RGBW,   "D",  PSTR("SK6812/WS2814 RGBW")},
 | |
|     {TYPE_TM1814,        "D",  PSTR("TM1814")},
 | |
|     {TYPE_WS2811_400KHZ, "D",  PSTR("400kHz")},
 | |
|     {TYPE_TM1829,        "D",  PSTR("TM1829")},
 | |
|     {TYPE_UCS8903,       "D",  PSTR("UCS8903")},
 | |
|     {TYPE_APA106,        "D",  PSTR("APA106/PL9823")},
 | |
|     {TYPE_TM1914,        "D",  PSTR("TM1914")},
 | |
|     {TYPE_FW1906,        "D",  PSTR("FW1906 GRBCW")},
 | |
|     {TYPE_UCS8904,       "D",  PSTR("UCS8904 RGBW")},
 | |
|     {TYPE_WS2805,        "D",  PSTR("WS2805 RGBCW")},
 | |
|     {TYPE_SM16825,       "D",  PSTR("SM16825 RGBCW")},
 | |
|     {TYPE_WS2812_1CH_X3, "D",  PSTR("WS2811 White")},
 | |
|     //{TYPE_WS2812_2CH_X3, "D",  PSTR("WS281x CCT")}, // not implemented
 | |
|     {TYPE_WS2812_WWA,    "D",  PSTR("WS281x WWA")}, // amber ignored
 | |
|     {TYPE_WS2801,        "2P", PSTR("WS2801")},
 | |
|     {TYPE_APA102,        "2P", PSTR("APA102")},
 | |
|     {TYPE_LPD8806,       "2P", PSTR("LPD8806")},
 | |
|     {TYPE_LPD6803,       "2P", PSTR("LPD6803")},
 | |
|     {TYPE_P9813,         "2P", PSTR("PP9813")},
 | |
|   };
 | |
| }
 | |
| 
 | |
| void BusDigital::begin() {
 | |
|   if (!_valid) return;
 | |
|   PolyBus::begin(_busPtr, _iType, _pins, _frequencykHz);
 | |
| }
 | |
| 
 | |
| void BusDigital::cleanup() {
 | |
|   DEBUGBUS_PRINTLN(F("Digital Cleanup."));
 | |
|   PolyBus::cleanup(_busPtr, _iType);
 | |
|   _iType = I_NONE;
 | |
|   _valid = false;
 | |
|   _busPtr = nullptr;
 | |
|   PinManager::deallocatePin(_pins[1], PinOwner::BusDigital);
 | |
|   PinManager::deallocatePin(_pins[0], PinOwner::BusDigital);
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef ESP8266
 | |
|   // 1 MHz clock
 | |
|   #define CLOCK_FREQUENCY 1000000UL
 | |
| #else
 | |
|   // Use XTAL clock if possible to avoid timer frequency error when setting APB clock < 80 Mhz
 | |
|   // https://github.com/espressif/arduino-esp32/blob/2.0.2/cores/esp32/esp32-hal-ledc.c
 | |
|   #ifdef SOC_LEDC_SUPPORT_XTAL_CLOCK
 | |
|     #define CLOCK_FREQUENCY 40000000UL
 | |
|   #else
 | |
|     #define CLOCK_FREQUENCY 80000000UL
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef ESP8266
 | |
|   #define MAX_BIT_WIDTH 10
 | |
| #else
 | |
|   #ifdef SOC_LEDC_TIMER_BIT_WIDE_NUM
 | |
|     // C6/H2/P4: 20 bit, S2/S3/C2/C3: 14 bit
 | |
|     #define MAX_BIT_WIDTH SOC_LEDC_TIMER_BIT_WIDE_NUM
 | |
|   #else
 | |
|     // ESP32: 20 bit (but in reality we would never go beyond 16 bit as the frequency would be to low)
 | |
|     #define MAX_BIT_WIDTH 14
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
| BusPwm::BusPwm(const BusConfig &bc)
 | |
| : Bus(bc.type, bc.start, bc.autoWhite, 1, bc.reversed, bc.refreshReq) // hijack Off refresh flag to indicate usage of dithering
 | |
| {
 | |
|   if (!isPWM(bc.type)) return;
 | |
|   const unsigned numPins = numPWMPins(bc.type);
 | |
|   [[maybe_unused]] const bool dithering = _needsRefresh;
 | |
|   _frequency = bc.frequency ? bc.frequency : WLED_PWM_FREQ;
 | |
|   // duty cycle resolution (_depth) can be extracted from this formula: CLOCK_FREQUENCY > _frequency * 2^_depth
 | |
|   for (_depth = MAX_BIT_WIDTH; _depth > 8; _depth--) if (((CLOCK_FREQUENCY/_frequency) >> _depth) > 0) break;
 | |
| 
 | |
|   managed_pin_type pins[numPins];
 | |
|   for (unsigned i = 0; i < numPins; i++) pins[i] = {(int8_t)bc.pins[i], true};
 | |
|   if (PinManager::allocateMultiplePins(pins, numPins, PinOwner::BusPwm)) {
 | |
|     #ifdef ESP8266
 | |
|     analogWriteRange((1<<_depth)-1);
 | |
|     analogWriteFreq(_frequency);
 | |
|     #else
 | |
|     // for 2 pin PWM CCT strip pinManager will make sure both LEDC channels are in the same speed group and sharing the same timer
 | |
|     _ledcStart = PinManager::allocateLedc(numPins);
 | |
|     if (_ledcStart == 255) { //no more free LEDC channels
 | |
|       PinManager::deallocateMultiplePins(pins, numPins, PinOwner::BusPwm);
 | |
|       DEBUGBUS_PRINTLN(F("No more free LEDC channels!"));
 | |
|       return;
 | |
|     }
 | |
|     // if _needsRefresh is true (UI hack) we are using dithering (credit @dedehai & @zalatnaicsongor)
 | |
|     if (dithering) _depth = 12; // fixed 8 bit depth PWM with 4 bit dithering (ESP8266 has no hardware to support dithering)
 | |
|     #endif
 | |
| 
 | |
|     for (unsigned i = 0; i < numPins; i++) {
 | |
|       _pins[i] = bc.pins[i]; // store only after allocateMultiplePins() succeeded
 | |
|       #ifdef ESP8266
 | |
|       pinMode(_pins[i], OUTPUT);
 | |
|       #else
 | |
|       unsigned channel = _ledcStart + i;
 | |
|       ledcSetup(channel, _frequency, _depth - (dithering*4)); // with dithering _frequency doesn't really matter as resolution is 8 bit
 | |
|       ledcAttachPin(_pins[i], channel);
 | |
|       // LEDC timer reset credit @dedehai
 | |
|       uint8_t group = (channel / 8), timer = ((channel / 2) % 4); // same fromula as in ledcSetup()
 | |
|       ledc_timer_rst((ledc_mode_t)group, (ledc_timer_t)timer); // reset timer so all timers are almost in sync (for phase shift)
 | |
|       #endif
 | |
|     }
 | |
|     _hasRgb = hasRGB(bc.type);
 | |
|     _hasWhite = hasWhite(bc.type);
 | |
|     _hasCCT = hasCCT(bc.type);
 | |
|     _valid = true;
 | |
|   }
 | |
|   DEBUGBUS_PRINTF_P(PSTR("%successfully inited PWM strip with type %u, frequency %u, bit depth %u and pins %u,%u,%u,%u,%u\n"), _valid?"S":"Uns", bc.type, _frequency, _depth, _pins[0], _pins[1], _pins[2], _pins[3], _pins[4]);
 | |
| }
 | |
| 
 | |
| void BusPwm::setPixelColor(unsigned pix, uint32_t c) {
 | |
|   if (pix != 0 || !_valid) return; //only react to first pixel
 | |
|   if (_type != TYPE_ANALOG_3CH) c = autoWhiteCalc(c);
 | |
|   if (Bus::_cct >= 1900 && (_type == TYPE_ANALOG_3CH || _type == TYPE_ANALOG_4CH)) {
 | |
|     c = colorBalanceFromKelvin(Bus::_cct, c); //color correction from CCT
 | |
|   }
 | |
|   uint8_t r = R(c), g = G(c), b = B(c), w = W(c);
 | |
| 
 | |
|   switch (_type) {
 | |
|     case TYPE_ANALOG_1CH: //one channel (white), relies on auto white calculation
 | |
|       _data[0] = w;
 | |
|       break;
 | |
|     case TYPE_ANALOG_2CH: //warm white + cold white
 | |
|       if (cctICused) {
 | |
|         _data[0] = w;
 | |
|         _data[1] = Bus::_cct < 0 || Bus::_cct > 255 ? 127 : Bus::_cct;
 | |
|       } else {
 | |
|         Bus::calculateCCT(c, _data[0], _data[1]);
 | |
|       }
 | |
|       break;
 | |
|     case TYPE_ANALOG_5CH: //RGB + warm white + cold white
 | |
|       if (cctICused)
 | |
|         _data[4] = Bus::_cct < 0 || Bus::_cct > 255 ? 127 : Bus::_cct;
 | |
|       else
 | |
|         Bus::calculateCCT(c, w, _data[4]);
 | |
|     case TYPE_ANALOG_4CH: //RGBW
 | |
|       _data[3] = w;
 | |
|     case TYPE_ANALOG_3CH: //standard dumb RGB
 | |
|       _data[0] = r; _data[1] = g; _data[2] = b;
 | |
|       break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //does no index check
 | |
| uint32_t BusPwm::getPixelColor(unsigned pix) const {
 | |
|   if (!_valid) return 0;
 | |
|   // TODO getting the reverse from CCT is involved (a quick approximation when CCT blending is ste to 0 implemented)
 | |
|   switch (_type) {
 | |
|     case TYPE_ANALOG_1CH: //one channel (white), relies on auto white calculation
 | |
|       return RGBW32(0, 0, 0, _data[0]);
 | |
|     case TYPE_ANALOG_2CH: //warm white + cold white
 | |
|       if (cctICused) return RGBW32(0, 0, 0, _data[0]);
 | |
|       else           return RGBW32(0, 0, 0, _data[0] + _data[1]);
 | |
|     case TYPE_ANALOG_5CH: //RGB + warm white + cold white
 | |
|       if (cctICused) return RGBW32(_data[0], _data[1], _data[2], _data[3]);
 | |
|       else           return RGBW32(_data[0], _data[1], _data[2], _data[3] + _data[4]);
 | |
|     case TYPE_ANALOG_4CH: //RGBW
 | |
|       return RGBW32(_data[0], _data[1], _data[2], _data[3]);
 | |
|     case TYPE_ANALOG_3CH: //standard dumb RGB
 | |
|       return RGBW32(_data[0], _data[1], _data[2], 0);
 | |
|   }
 | |
|   return RGBW32(_data[0], _data[0], _data[0], _data[0]);
 | |
| }
 | |
| 
 | |
| void BusPwm::show() {
 | |
|   if (!_valid) return;
 | |
|   const size_t   numPins = getPins();
 | |
| #ifdef ESP8266
 | |
|    const unsigned analogPeriod = F_CPU / _frequency;
 | |
|    const unsigned maxBri = analogPeriod;  // compute to clock cycle accuracy
 | |
|    constexpr bool dithering = false;
 | |
|    constexpr unsigned bitShift = 8;  // 256 clocks for dead time, ~3us at 80MHz
 | |
| #else
 | |
|   // if _needsRefresh is true (UI hack) we are using dithering (credit @dedehai & @zalatnaicsongor)
 | |
|   // https://github.com/wled/WLED/pull/4115 and https://github.com/zalatnaicsongor/WLED/pull/1)
 | |
|   const bool     dithering = _needsRefresh; // avoid working with bitfield
 | |
|   const unsigned maxBri = (1<<_depth);      // possible values: 16384 (14), 8192 (13), 4096 (12), 2048 (11), 1024 (10), 512 (9) and 256 (8)
 | |
|   const unsigned bitShift = dithering * 4;  // if dithering, _depth is 12 bit but LEDC channel is set to 8 bit (using 4 fractional bits)
 | |
| #endif
 | |
|   // use CIE brightness formula (linear + cubic) to approximate human eye perceived brightness
 | |
|   // see: https://en.wikipedia.org/wiki/Lightness
 | |
|   unsigned pwmBri = _bri;
 | |
|   if (pwmBri < 21) {                                   // linear response for values [0-20]
 | |
|     pwmBri = (pwmBri * maxBri + 2300 / 2) / 2300 ;     // adding '0.5' before division for correct rounding, 2300 gives a good match to CIE curve
 | |
|   } else {                                             // cubic response for values [21-255]
 | |
|     float temp = float(pwmBri + 41) / float(255 + 41); // 41 is to match offset & slope to linear part
 | |
|     temp = temp * temp * temp * (float)maxBri;
 | |
|     pwmBri = (unsigned)temp;                           // pwmBri is in range [0-maxBri] C
 | |
|   }
 | |
| 
 | |
|   [[maybe_unused]] unsigned hPoint = 0;  // phase shift (0 - maxBri)
 | |
|   // we will be phase shifting every channel by previous pulse length (plus dead time if required)
 | |
|   // phase shifting is only mandatory when using H-bridge to drive reverse-polarity PWM CCT (2 wire) LED type
 | |
|   // CCT additive blending must be 0 (WW & CW will not overlap) otherwise signals *will* overlap
 | |
|   // for all other cases it will just try to "spread" the load on PSU
 | |
|   // Phase shifting requires that LEDC timers are synchronised (see setup()). For PWM CCT (and H-bridge) it is
 | |
|   // also mandatory that both channels use the same timer (pinManager takes care of that).
 | |
|   for (unsigned i = 0; i < numPins; i++) {
 | |
|     unsigned duty = (_data[i] * pwmBri) / 255;
 | |
|     unsigned deadTime = 0;
 | |
| 
 | |
|     if (_type == TYPE_ANALOG_2CH && Bus::_cctBlend == 0) {
 | |
|       // add dead time between signals (when using dithering, two full 8bit pulses are required)
 | |
|       deadTime = (1+dithering) << bitShift;
 | |
|       // we only need to take care of shortening the signal at (almost) full brightness otherwise pulses may overlap
 | |
|       if (_bri >= 254 && duty >= maxBri / 2 && duty < maxBri) {
 | |
|         duty -= deadTime << 1; // shorten duty of larger signal except if full on
 | |
|       }
 | |
|     }
 | |
|     if (_reversed) {
 | |
|       if (i) hPoint += duty;  // align start at time zero
 | |
|       duty = maxBri - duty;
 | |
|     }
 | |
|     #ifdef ESP8266
 | |
|     //stopWaveform(_pins[i]);  // can cause the waveform to miss a cycle. instead we risk crossovers.
 | |
|     startWaveformClockCycles(_pins[i], duty, analogPeriod - duty, 0, i ? _pins[0] : -1, hPoint, false);
 | |
|     #else
 | |
|     unsigned channel = _ledcStart + i;
 | |
|     unsigned gr = channel/8;  // high/low speed group
 | |
|     unsigned ch = channel%8;  // group channel
 | |
|     // directly write to LEDC struct as there is no HAL exposed function for dithering
 | |
|     // duty has 20 bit resolution with 4 fractional bits (24 bits in total)
 | |
|     LEDC.channel_group[gr].channel[ch].duty.duty = duty << ((!dithering)*4);  // lowest 4 bits are used for dithering, shift by 4 bits if not using dithering
 | |
|     LEDC.channel_group[gr].channel[ch].hpoint.hpoint = hPoint >> bitShift;    // hPoint is at _depth resolution (needs shifting if dithering)
 | |
|     ledc_update_duty((ledc_mode_t)gr, (ledc_channel_t)ch);
 | |
|     #endif
 | |
| 
 | |
|     if (!_reversed) hPoint += duty;
 | |
|     hPoint += deadTime;        // offset to cascade the signals
 | |
|     if (hPoint >= maxBri) hPoint -= maxBri; // offset is out of bounds, reset
 | |
|   }
 | |
| }
 | |
| 
 | |
| size_t BusPwm::getPins(uint8_t* pinArray) const {
 | |
|   if (!_valid) return 0;
 | |
|   unsigned numPins = numPWMPins(_type);
 | |
|   if (pinArray) for (unsigned i = 0; i < numPins; i++) pinArray[i] = _pins[i];
 | |
|   return numPins;
 | |
| }
 | |
| 
 | |
| // credit @willmmiles & @netmindz https://github.com/wled/WLED/pull/4056
 | |
| std::vector<LEDType> BusPwm::getLEDTypes() {
 | |
|   return {
 | |
|     {TYPE_ANALOG_1CH, "A",      PSTR("PWM White")},
 | |
|     {TYPE_ANALOG_2CH, "AA",     PSTR("PWM CCT")},
 | |
|     {TYPE_ANALOG_3CH, "AAA",    PSTR("PWM RGB")},
 | |
|     {TYPE_ANALOG_4CH, "AAAA",   PSTR("PWM RGBW")},
 | |
|     {TYPE_ANALOG_5CH, "AAAAA",  PSTR("PWM RGB+CCT")},
 | |
|     //{TYPE_ANALOG_6CH, "AAAAAA", PSTR("PWM RGB+DCCT")}, // unimplementable ATM
 | |
|   };
 | |
| }
 | |
| 
 | |
| void BusPwm::deallocatePins() {
 | |
|   size_t numPins = getPins();
 | |
|   for (unsigned i = 0; i < numPins; i++) {
 | |
|     PinManager::deallocatePin(_pins[i], PinOwner::BusPwm);
 | |
|     if (!PinManager::isPinOk(_pins[i])) continue;
 | |
|     #ifdef ESP8266
 | |
|     digitalWrite(_pins[i], LOW); //turn off PWM interrupt
 | |
|     #else
 | |
|     if (_ledcStart < WLED_MAX_ANALOG_CHANNELS) ledcDetachPin(_pins[i]);
 | |
|     #endif
 | |
|   }
 | |
|   #ifdef ARDUINO_ARCH_ESP32
 | |
|   PinManager::deallocateLedc(_ledcStart, numPins);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| BusOnOff::BusOnOff(const BusConfig &bc)
 | |
| : Bus(bc.type, bc.start, bc.autoWhite, 1, bc.reversed)
 | |
| , _data(0)
 | |
| {
 | |
|   if (!Bus::isOnOff(bc.type)) return;
 | |
| 
 | |
|   uint8_t currentPin = bc.pins[0];
 | |
|   if (!PinManager::allocatePin(currentPin, true, PinOwner::BusOnOff)) {
 | |
|     return;
 | |
|   }
 | |
|   _pin = currentPin; //store only after allocatePin() succeeds
 | |
|   pinMode(_pin, OUTPUT);
 | |
|   _hasRgb = false;
 | |
|   _hasWhite = false;
 | |
|   _hasCCT = false;
 | |
|   _valid = true;
 | |
|   DEBUGBUS_PRINTF_P(PSTR("%successfully inited On/Off strip with pin %u\n"), _valid?"S":"Uns", _pin);
 | |
| }
 | |
| 
 | |
| void BusOnOff::setPixelColor(unsigned pix, uint32_t c) {
 | |
|   if (pix != 0 || !_valid) return; //only react to first pixel
 | |
|   c = autoWhiteCalc(c);
 | |
|   uint8_t r = R(c), g = G(c), b = B(c), w = W(c);
 | |
|   _data = bool(r|g|b|w) && bool(_bri) ? 0xFF : 0;
 | |
| }
 | |
| 
 | |
| uint32_t BusOnOff::getPixelColor(unsigned pix) const {
 | |
|   if (!_valid) return 0;
 | |
|   return RGBW32(_data, _data, _data, _data);
 | |
| }
 | |
| 
 | |
| void BusOnOff::show() {
 | |
|   if (!_valid) return;
 | |
|   digitalWrite(_pin, _reversed ? !(bool)_data : (bool)_data);
 | |
| }
 | |
| 
 | |
| size_t BusOnOff::getPins(uint8_t* pinArray) const {
 | |
|   if (!_valid) return 0;
 | |
|   if (pinArray) pinArray[0] = _pin;
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| // credit @willmmiles & @netmindz https://github.com/wled/WLED/pull/4056
 | |
| std::vector<LEDType> BusOnOff::getLEDTypes() {
 | |
|   return {
 | |
|     {TYPE_ONOFF, "", PSTR("On/Off")},
 | |
|   };
 | |
| }
 | |
| 
 | |
| BusNetwork::BusNetwork(const BusConfig &bc)
 | |
| : Bus(bc.type, bc.start, bc.autoWhite, bc.count)
 | |
| , _broadcastLock(false)
 | |
| {
 | |
|   switch (bc.type) {
 | |
|     case TYPE_NET_ARTNET_RGB:
 | |
|       _UDPtype = 2;
 | |
|       break;
 | |
|     case TYPE_NET_ARTNET_RGBW:
 | |
|       _UDPtype = 2;
 | |
|       break;
 | |
|     case TYPE_NET_E131_RGB:
 | |
|       _UDPtype = 1;
 | |
|       break;
 | |
|     default: // TYPE_NET_DDP_RGB / TYPE_NET_DDP_RGBW
 | |
|       _UDPtype = 0;
 | |
|       break;
 | |
|   }
 | |
|   _hasRgb = hasRGB(bc.type);
 | |
|   _hasWhite = hasWhite(bc.type);
 | |
|   _hasCCT = false;
 | |
|   _UDPchannels = _hasWhite + 3;
 | |
|   _client = IPAddress(bc.pins[0],bc.pins[1],bc.pins[2],bc.pins[3]);
 | |
|   #ifdef ARDUINO_ARCH_ESP32
 | |
|   _hostname = bc.text;
 | |
|   resolveHostname(); // resolve hostname to IP address if needed
 | |
|   #endif
 | |
|   _data = (uint8_t*)d_calloc(_len, _UDPchannels);
 | |
|   _valid = (_data != nullptr);
 | |
|   DEBUGBUS_PRINTF_P(PSTR("%successfully inited virtual strip with type %u and IP %u.%u.%u.%u\n"), _valid?"S":"Uns", bc.type, bc.pins[0], bc.pins[1], bc.pins[2], bc.pins[3]);
 | |
| }
 | |
| 
 | |
| void BusNetwork::setPixelColor(unsigned pix, uint32_t c) {
 | |
|   if (!_valid || pix >= _len) return;
 | |
|   if (_hasWhite) c = autoWhiteCalc(c);
 | |
|   if (Bus::_cct >= 1900) c = colorBalanceFromKelvin(Bus::_cct, c); //color correction from CCT
 | |
|   unsigned offset = pix * _UDPchannels;
 | |
|   _data[offset]   = R(c);
 | |
|   _data[offset+1] = G(c);
 | |
|   _data[offset+2] = B(c);
 | |
|   if (_hasWhite) _data[offset+3] = W(c);
 | |
| }
 | |
| 
 | |
| uint32_t BusNetwork::getPixelColor(unsigned pix) const {
 | |
|   if (!_valid || pix >= _len) return 0;
 | |
|   unsigned offset = pix * _UDPchannels;
 | |
|   return RGBW32(_data[offset], _data[offset+1], _data[offset+2], (hasWhite() ? _data[offset+3] : 0));
 | |
| }
 | |
| 
 | |
| void BusNetwork::show() {
 | |
|   if (!_valid || !canShow()) return;
 | |
|   _broadcastLock = true;
 | |
|   realtimeBroadcast(_UDPtype, _client, _len, _data, _bri, hasWhite());
 | |
|   _broadcastLock = false;
 | |
| }
 | |
| 
 | |
| size_t BusNetwork::getPins(uint8_t* pinArray) const {
 | |
|   if (pinArray) for (unsigned i = 0; i < 4; i++) pinArray[i] = _client[i];
 | |
|   return 4;
 | |
| }
 | |
| 
 | |
| #ifdef ARDUINO_ARCH_ESP32
 | |
| void BusNetwork::resolveHostname() {
 | |
|   static unsigned long nextResolve = 0;
 | |
|   if (Network.isConnected() && millis() > nextResolve && _hostname.length() > 0) {
 | |
|     nextResolve = millis() + 600000; // resolve only every 10 minutes
 | |
|     IPAddress clnt;
 | |
|     if (strlen(cmDNS) > 0) clnt = MDNS.queryHost(_hostname);
 | |
|     else WiFi.hostByName(_hostname.c_str(), clnt);
 | |
|     if (clnt != IPAddress()) _client = clnt;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // credit @willmmiles & @netmindz https://github.com/wled/WLED/pull/4056
 | |
| std::vector<LEDType> BusNetwork::getLEDTypes() {
 | |
|   return {
 | |
|     {TYPE_NET_DDP_RGB,     "N",     PSTR("DDP RGB (network)")},      // should be "NNNN" to determine 4 "pin" fields
 | |
|     {TYPE_NET_ARTNET_RGB,  "N",     PSTR("Art-Net RGB (network)")},
 | |
|     {TYPE_NET_DDP_RGBW,    "N",     PSTR("DDP RGBW (network)")},
 | |
|     {TYPE_NET_ARTNET_RGBW, "N",     PSTR("Art-Net RGBW (network)")},
 | |
|     // hypothetical extensions
 | |
|     //{TYPE_VIRTUAL_I2C_W,   "V",     PSTR("I2C White (virtual)")}, // allows setting I2C address in _pin[0]
 | |
|     //{TYPE_VIRTUAL_I2C_CCT, "V",     PSTR("I2C CCT (virtual)")}, // allows setting I2C address in _pin[0]
 | |
|     //{TYPE_VIRTUAL_I2C_RGB, "VVV",   PSTR("I2C RGB (virtual)")}, // allows setting I2C address in _pin[0] and 2 additional values in _pin[1] & _pin[2]
 | |
|     //{TYPE_USERMOD,         "VVVVV", PSTR("Usermod (virtual)")}, // 5 data fields (see https://github.com/wled/WLED/pull/4123)
 | |
|   };
 | |
| }
 | |
| 
 | |
| void BusNetwork::cleanup() {
 | |
|   DEBUGBUS_PRINTLN(F("Virtual Cleanup."));
 | |
|   d_free(_data);
 | |
|   _data = nullptr;
 | |
|   _type = I_NONE;
 | |
|   _valid = false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //utility to get the approx. memory usage of a given BusConfig
 | |
| size_t BusConfig::memUsage(unsigned nr) const {
 | |
|   if (Bus::isVirtual(type)) {
 | |
|     return sizeof(BusNetwork) + (count * Bus::getNumberOfChannels(type));
 | |
|   } else if (Bus::isDigital(type)) {
 | |
|     return sizeof(BusDigital) + PolyBus::memUsage(count + skipAmount, PolyBus::getI(type, pins, nr)) /*+ doubleBuffer * (count + skipAmount) * Bus::getNumberOfChannels(type)*/;
 | |
|   } else if (Bus::isOnOff(type)) {
 | |
|     return sizeof(BusOnOff);
 | |
|   } else {
 | |
|     return sizeof(BusPwm);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| size_t BusManager::memUsage() {
 | |
|   // when ESP32, S2 & S3 use parallel I2S only the largest bus determines the total memory requirements for back buffers
 | |
|   // front buffers are always allocated per bus
 | |
|   unsigned size = 0;
 | |
|   unsigned maxI2S = 0;
 | |
|   #if !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(ESP8266)
 | |
|   unsigned digitalCount = 0;
 | |
|     #if defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3)
 | |
|       #define MAX_RMT 4
 | |
|     #else
 | |
|       #define MAX_RMT 8
 | |
|     #endif
 | |
|   #endif
 | |
|   for (const auto &bus : busses) {
 | |
|     unsigned busSize = bus->getBusSize();
 | |
|     #if !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(ESP8266)
 | |
|     if (bus->isDigital() && !bus->is2Pin()) digitalCount++;
 | |
|     if (PolyBus::isParallelI2S1Output() && digitalCount > MAX_RMT) {
 | |
|       unsigned i2sCommonSize = 3 * bus->getLength() * bus->getNumberOfChannels() * (bus->is16bit()+1);
 | |
|       if (i2sCommonSize > maxI2S) maxI2S = i2sCommonSize;
 | |
|       busSize -= i2sCommonSize;
 | |
|     }
 | |
|     #endif
 | |
|     size += busSize;
 | |
|   }
 | |
|   return size + maxI2S;
 | |
| }
 | |
| 
 | |
| int BusManager::add(const BusConfig &bc) {
 | |
|   DEBUGBUS_PRINTF_P(PSTR("Bus: Adding bus (p:%d v:%d)\n"), getNumBusses(), getNumVirtualBusses());
 | |
|   unsigned digital = 0;
 | |
|   unsigned analog  = 0;
 | |
|   unsigned twoPin  = 0;
 | |
|   for (const auto &bus : busses) {
 | |
|     if (bus->isPWM()) analog += bus->getPins(); // number of analog channels used
 | |
|     if (bus->isDigital() && !bus->is2Pin()) digital++;
 | |
|     if (bus->is2Pin()) twoPin++;
 | |
|   }
 | |
|   if (digital > WLED_MAX_DIGITAL_CHANNELS || analog > WLED_MAX_ANALOG_CHANNELS) return -1;
 | |
|   if (Bus::isVirtual(bc.type)) {
 | |
|     busses.push_back(make_unique<BusNetwork>(bc));
 | |
|   } else if (Bus::isDigital(bc.type)) {
 | |
|     busses.push_back(make_unique<BusDigital>(bc, Bus::is2Pin(bc.type) ? twoPin : digital));
 | |
|   } else if (Bus::isOnOff(bc.type)) {
 | |
|     busses.push_back(make_unique<BusOnOff>(bc));
 | |
|   } else {
 | |
|     busses.push_back(make_unique<BusPwm>(bc));
 | |
|   }
 | |
|   return busses.size();
 | |
| }
 | |
| 
 | |
| // credit @willmmiles
 | |
| static String LEDTypesToJson(const std::vector<LEDType>& types) {
 | |
|   String json;
 | |
|   for (const auto &type : types) {
 | |
|     // capabilities follows similar pattern as JSON API
 | |
|     int capabilities = Bus::hasRGB(type.id) | Bus::hasWhite(type.id)<<1 | Bus::hasCCT(type.id)<<2 | Bus::is16bit(type.id)<<4 | Bus::mustRefresh(type.id)<<5;
 | |
|     char str[256];
 | |
|     sprintf_P(str, PSTR("{i:%d,c:%d,t:\"%s\",n:\"%s\"},"), type.id, capabilities, type.type, type.name);
 | |
|     json += str;
 | |
|   }
 | |
|   return json;
 | |
| }
 | |
| 
 | |
| // credit @willmmiles & @netmindz https://github.com/wled/WLED/pull/4056
 | |
| String BusManager::getLEDTypesJSONString() {
 | |
|   String json = "[";
 | |
|   json += LEDTypesToJson(BusDigital::getLEDTypes());
 | |
|   json += LEDTypesToJson(BusOnOff::getLEDTypes());
 | |
|   json += LEDTypesToJson(BusPwm::getLEDTypes());
 | |
|   json += LEDTypesToJson(BusNetwork::getLEDTypes());
 | |
|   //json += LEDTypesToJson(BusVirtual::getLEDTypes());
 | |
|   json.setCharAt(json.length()-1, ']'); // replace last comma with bracket
 | |
|   return json;
 | |
| }
 | |
| 
 | |
| void BusManager::useParallelOutput() {
 | |
|   DEBUGBUS_PRINTLN(F("Bus: Enabling parallel I2S."));
 | |
|   PolyBus::setParallelI2S1Output();
 | |
| }
 | |
| 
 | |
| bool BusManager::hasParallelOutput() {
 | |
|   return PolyBus::isParallelI2S1Output();
 | |
| }
 | |
| 
 | |
| //do not call this method from system context (network callback)
 | |
| void BusManager::removeAll() {
 | |
|   DEBUGBUS_PRINTLN(F("Removing all."));
 | |
|   //prevents crashes due to deleting busses while in use.
 | |
|   while (!canAllShow()) yield();
 | |
|   busses.clear();
 | |
|   PolyBus::setParallelI2S1Output(false);
 | |
| }
 | |
| 
 | |
| #ifdef ESP32_DATA_IDLE_HIGH
 | |
| // #2478
 | |
| // If enabled, RMT idle level is set to HIGH when off
 | |
| // to prevent leakage current when using an N-channel MOSFET to toggle LED power
 | |
| void BusManager::esp32RMTInvertIdle() {
 | |
|   bool idle_out;
 | |
|   unsigned rmt = 0;
 | |
|   unsigned u = 0;
 | |
|   for (auto &bus : busses) {
 | |
|     if (bus->getLength()==0 || !bus->isDigital() || bus->is2Pin()) continue;
 | |
|     #if defined(CONFIG_IDF_TARGET_ESP32C3)    // 2 RMT, only has 1 I2S but NPB does not support it ATM
 | |
|       if (u > 1) return;
 | |
|       rmt = u;
 | |
|     #elif defined(CONFIG_IDF_TARGET_ESP32S2)  // 4 RMT, only has 1 I2S bus, supported in NPB
 | |
|       if (u > 3) return;
 | |
|       rmt = u;
 | |
|     #elif defined(CONFIG_IDF_TARGET_ESP32S3)  // 4 RMT, has 2 I2S but NPB does not support them ATM
 | |
|       if (u > 3) return;
 | |
|       rmt = u;
 | |
|     #else
 | |
|       unsigned numI2S = !PolyBus::isParallelI2S1Output(); // if using parallel I2S, RMT is used 1st
 | |
|       if (numI2S > u) continue;
 | |
|       if (u > 7 + numI2S) return;
 | |
|       rmt = u - numI2S;
 | |
|     #endif
 | |
|     //assumes that bus number to rmt channel mapping stays 1:1
 | |
|     rmt_channel_t ch = static_cast<rmt_channel_t>(rmt);
 | |
|     rmt_idle_level_t lvl;
 | |
|     rmt_get_idle_level(ch, &idle_out, &lvl);
 | |
|     if (lvl == RMT_IDLE_LEVEL_HIGH) lvl = RMT_IDLE_LEVEL_LOW;
 | |
|     else if (lvl == RMT_IDLE_LEVEL_LOW) lvl = RMT_IDLE_LEVEL_HIGH;
 | |
|     else continue;
 | |
|     rmt_set_idle_level(ch, idle_out, lvl);
 | |
|     u++
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void BusManager::on() {
 | |
|   #ifdef ESP8266
 | |
|   //Fix for turning off onboard LED breaking bus
 | |
|   if (PinManager::getPinOwner(LED_BUILTIN) == PinOwner::BusDigital) {
 | |
|     for (auto &bus : busses) {
 | |
|       uint8_t pins[2] = {255,255};
 | |
|       if (bus->isDigital() && bus->getPins(pins)) {
 | |
|         if (pins[0] == LED_BUILTIN || pins[1] == LED_BUILTIN) {
 | |
|           BusDigital &b = static_cast<BusDigital&>(*bus);
 | |
|           b.begin();
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   #else
 | |
|   for (auto &bus : busses) if (bus->isVirtual()) {
 | |
|     // virtual/network bus should check for IP change if hostname is specified
 | |
|     // otherwise there are no endpoints to force DNS resolution
 | |
|     BusNetwork &b = static_cast<BusNetwork&>(*bus);
 | |
|     b.resolveHostname();
 | |
|   }
 | |
|   #endif
 | |
|   #ifdef ESP32_DATA_IDLE_HIGH
 | |
|   esp32RMTInvertIdle();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void BusManager::off() {
 | |
|   #ifdef ESP8266
 | |
|   // turn off built-in LED if strip is turned off
 | |
|   // this will break digital bus so will need to be re-initialised on On
 | |
|   if (PinManager::getPinOwner(LED_BUILTIN) == PinOwner::BusDigital) {
 | |
|     for (const auto &bus : busses) if (bus->isOffRefreshRequired()) return;
 | |
|     pinMode(LED_BUILTIN, OUTPUT);
 | |
|     digitalWrite(LED_BUILTIN, HIGH);
 | |
|   }
 | |
|   #endif
 | |
|   #ifdef ESP32_DATA_IDLE_HIGH
 | |
|   esp32RMTInvertIdle();
 | |
|   #endif
 | |
|   _gMilliAmpsUsed = 0; // reset, assume no LED idle current if relay is off
 | |
| }
 | |
| 
 | |
| void BusManager::show() {
 | |
|   applyABL(); // apply brightness limit, updates _gMilliAmpsUsed
 | |
|   for (auto &bus : busses) {
 | |
|     bus->show();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void IRAM_ATTR BusManager::setPixelColor(unsigned pix, uint32_t c) {
 | |
|   for (auto &bus : busses) {
 | |
|     if (!bus->containsPixel(pix)) continue;
 | |
|     bus->setPixelColor(pix - bus->getStart(), c);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BusManager::setSegmentCCT(int16_t cct, bool allowWBCorrection) {
 | |
|   if (cct > 255) cct = 255;
 | |
|   if (cct >= 0) {
 | |
|     //if white balance correction allowed, save as kelvin value instead of 0-255
 | |
|     if (allowWBCorrection) cct = 1900 + (cct << 5);
 | |
|   } else cct = -1; // will use kelvin approximation from RGB
 | |
|   Bus::setCCT(cct);
 | |
| }
 | |
| 
 | |
| uint32_t BusManager::getPixelColor(unsigned pix) {
 | |
|   for (auto &bus : busses) {
 | |
|     if (!bus->containsPixel(pix)) continue;
 | |
|     return bus->getPixelColor(pix - bus->getStart());
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool BusManager::canAllShow() {
 | |
|   for (const auto &bus : busses) if (!bus->canShow()) return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void BusManager::initializeABL() {
 | |
|   _useABL = false; // reset
 | |
|   if (_gMilliAmpsMax > 0) {
 | |
|     // check global brightness limit
 | |
|     for (auto &bus : busses) {
 | |
|       if (bus->isDigital() && bus->getLEDCurrent() > 0) {
 | |
|         _useABL = true; // at least one bus has valid LED current
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // check per bus brightness limit
 | |
|     unsigned numABLbuses = 0;
 | |
|     for (auto &bus : busses) {
 | |
|       if (bus->isDigital() && bus->getLEDCurrent() > 0 && bus->getMaxCurrent() > 0)
 | |
|         numABLbuses++; // count ABL enabled buses
 | |
|     }
 | |
|     if (numABLbuses > 0) {
 | |
|       _useABL = true; // at least one bus has ABL set
 | |
|       uint32_t ESPshare = MA_FOR_ESP / numABLbuses; // share of ESP current per ABL bus
 | |
|       for (auto &bus : busses) {
 | |
|         if (bus->isDigital()) {
 | |
|           BusDigital &busd = static_cast<BusDigital&>(*bus);
 | |
|           uint32_t busLength = busd.getLength();
 | |
|           uint32_t busDemand = busLength * busd.getLEDCurrent();
 | |
|           uint32_t busMax    = busd.getMaxCurrent();
 | |
|           if (busMax > ESPshare)  busMax -= ESPshare;
 | |
|           if (busMax < busLength) busMax  = busLength; // give each LED 1mA, ABL will dim down to minimum
 | |
|           if (busDemand == 0) busMax = 0; // no LED current set, disable ABL for this bus
 | |
|           busd.setCurrentLimit(busMax);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BusManager::applyABL() {
 | |
|   if (_useABL) {
 | |
|     unsigned milliAmpsSum = 0; // use temporary variable to always return a valid _gMilliAmpsUsed to UI
 | |
|     unsigned totalLEDs = 0;
 | |
|     for (auto &bus : busses) {
 | |
|       if (bus->isDigital() && bus->isOk()) {
 | |
|         BusDigital &busd = static_cast<BusDigital&>(*bus);
 | |
|         busd.estimateCurrent(); // sets _milliAmpsTotal, current is estimated for all buses even if they have the limit set to 0
 | |
|         if (_gMilliAmpsMax == 0)
 | |
|           busd.applyBriLimit(0); // apply per bus ABL limit, updates _milliAmpsTotal if limit reached
 | |
|         milliAmpsSum += busd.getUsedCurrent();
 | |
|         totalLEDs += busd.getLength(); // sum total number of LEDs for global Limit
 | |
|       }
 | |
|     }
 | |
|     // check global current limit and apply global ABL limit, total current is summed above
 | |
|     if (_gMilliAmpsMax > 0) {
 | |
|       uint8_t  newBri = 255;
 | |
|       uint32_t globalMax = _gMilliAmpsMax > MA_FOR_ESP ? _gMilliAmpsMax - MA_FOR_ESP : 1; // subtract ESP current consumption, fully limit if too low
 | |
|       if (globalMax > totalLEDs) { // check if budget is larger than standby current
 | |
|         if (milliAmpsSum > globalMax) {
 | |
|           newBri = globalMax * 255 / milliAmpsSum + 1; // scale brightness down to stay in current limit, +1 to avoid 0 brightness
 | |
|           milliAmpsSum = globalMax; // update total used current
 | |
|         }
 | |
|       } else {
 | |
|         newBri = 1; // limit too low, set brightness to minimum
 | |
|         milliAmpsSum = totalLEDs; // estimate total used current as minimum
 | |
|       }
 | |
| 
 | |
|       // apply brightness limit to each bus, if its 255 it will only reset _colorSum
 | |
|       for (auto &bus : busses) {
 | |
|         if (bus->isDigital() && bus->isOk()) {
 | |
|           BusDigital &busd = static_cast<BusDigital&>(*bus);
 | |
|           if (busd.getLEDCurrent() > 0)  // skip buses with LED current set to 0
 | |
|             busd.applyBriLimit(newBri);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     _gMilliAmpsUsed = milliAmpsSum;
 | |
|   }
 | |
|   else
 | |
|     _gMilliAmpsUsed = 0; // reset, we have no current estimation without ABL
 | |
| }
 | |
| 
 | |
| ColorOrderMap& BusManager::getColorOrderMap() { return _colorOrderMap; }
 | |
| 
 | |
| 
 | |
| bool PolyBus::_useParallelI2S = false;
 | |
| 
 | |
| // Bus static member definition
 | |
| int16_t Bus::_cct = -1;
 | |
| uint8_t Bus::_cctBlend = 0; // 0 - 127
 | |
| uint8_t Bus::_gAWM = 255;
 | |
| 
 | |
| uint16_t BusDigital::_milliAmpsTotal = 0;
 | |
| 
 | |
| std::vector<std::unique_ptr<Bus>> BusManager::busses;
 | |
| uint16_t BusManager::_gMilliAmpsUsed = 0;
 | |
| uint16_t BusManager::_gMilliAmpsMax = ABL_MILLIAMPS_DEFAULT;
 | |
| bool BusManager::_useABL = false;
 |