Merge branch 'bus-improvements' into parallel-I2S
This commit is contained in:
255
wled00/FX.cpp
255
wled00/FX.cpp
@@ -197,7 +197,7 @@ static const char _data_FX_MODE_STROBE_RAINBOW[] PROGMEM = "Strobe Rainbow@!;,!;
|
||||
* if (bool rev == true) then LEDs are turned off in reverse order
|
||||
*/
|
||||
uint16_t color_wipe(bool rev, bool useRandomColors) {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
uint32_t cycleTime = 750 + (255 - SEGMENT.speed)*150;
|
||||
uint32_t perc = strip.now % cycleTime;
|
||||
unsigned prog = (perc * 65535) / cycleTime;
|
||||
@@ -410,7 +410,7 @@ static const char _data_FX_MODE_FADE[] PROGMEM = "Fade@!;!,!;!;01";
|
||||
* Scan mode parent function
|
||||
*/
|
||||
uint16_t scan(bool dual) {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
uint32_t cycleTime = 750 + (255 - SEGMENT.speed)*150;
|
||||
uint32_t perc = strip.now % cycleTime;
|
||||
int prog = (perc * 65535) / cycleTime;
|
||||
@@ -642,11 +642,12 @@ static const char _data_FX_MODE_TWINKLE[] PROGMEM = "Twinkle@!,!;!,!;!;;m12=0";
|
||||
* Dissolve function
|
||||
*/
|
||||
uint16_t dissolve(uint32_t color) {
|
||||
unsigned dataSize = (SEGLEN+7) >> 3; //1 bit per LED
|
||||
unsigned dataSize = sizeof(uint32_t) * SEGLEN;
|
||||
if (!SEGENV.allocateData(dataSize)) return mode_static(); //allocation failed
|
||||
uint32_t* pixels = reinterpret_cast<uint32_t*>(SEGENV.data);
|
||||
|
||||
if (SEGENV.call == 0) {
|
||||
memset(SEGMENT.data, 0xFF, dataSize); // start by fading pixels up
|
||||
for (unsigned i = 0; i < SEGLEN; i++) pixels[i] = SEGCOLOR(1);
|
||||
SEGENV.aux0 = 1;
|
||||
}
|
||||
|
||||
@@ -654,33 +655,26 @@ uint16_t dissolve(uint32_t color) {
|
||||
if (hw_random8() <= SEGMENT.intensity) {
|
||||
for (size_t times = 0; times < 10; times++) { //attempt to spawn a new pixel 10 times
|
||||
unsigned i = hw_random16(SEGLEN);
|
||||
unsigned index = i >> 3;
|
||||
unsigned bitNum = i & 0x07;
|
||||
bool fadeUp = bitRead(SEGENV.data[index], bitNum);
|
||||
if (SEGENV.aux0) { //dissolve to primary/palette
|
||||
if (fadeUp) {
|
||||
if (color == SEGCOLOR(0)) {
|
||||
SEGMENT.setPixelColor(i, SEGMENT.color_from_palette(i, true, PALETTE_SOLID_WRAP, 0));
|
||||
} else {
|
||||
SEGMENT.setPixelColor(i, color);
|
||||
}
|
||||
bitWrite(SEGENV.data[index], bitNum, false);
|
||||
if (pixels[i] == SEGCOLOR(1)) {
|
||||
pixels[i] = color == SEGCOLOR(0) ? SEGMENT.color_from_palette(i, true, PALETTE_SOLID_WRAP, 0) : color;
|
||||
break; //only spawn 1 new pixel per frame per 50 LEDs
|
||||
}
|
||||
} else { //dissolve to secondary
|
||||
if (!fadeUp) {
|
||||
SEGMENT.setPixelColor(i, SEGCOLOR(1)); break;
|
||||
bitWrite(SEGENV.data[index], bitNum, true);
|
||||
if (pixels[i] != SEGCOLOR(1)) {
|
||||
pixels[i] = SEGCOLOR(1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// fix for #4401
|
||||
for (unsigned i = 0; i < SEGLEN; i++) SEGMENT.setPixelColor(i, pixels[i]);
|
||||
|
||||
if (SEGENV.step > (255 - SEGMENT.speed) + 15U) {
|
||||
SEGENV.aux0 = !SEGENV.aux0;
|
||||
SEGENV.step = 0;
|
||||
memset(SEGMENT.data, (SEGENV.aux0 ? 0xFF : 0), dataSize); // switch fading
|
||||
} else {
|
||||
SEGENV.step++;
|
||||
}
|
||||
@@ -1023,7 +1017,7 @@ static const char _data_FX_MODE_COLORFUL[] PROGMEM = "Colorful@!,Saturation;1,2,
|
||||
* Emulates a traffic light.
|
||||
*/
|
||||
uint16_t mode_traffic_light(void) {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
for (unsigned i=0; i < SEGLEN; i++)
|
||||
SEGMENT.setPixelColor(i, SEGMENT.color_from_palette(i, true, PALETTE_SOLID_WRAP, 1));
|
||||
uint32_t mdelay = 500;
|
||||
@@ -1056,7 +1050,7 @@ static const char _data_FX_MODE_TRAFFIC_LIGHT[] PROGMEM = "Traffic Light@!,US st
|
||||
*/
|
||||
#define FLASH_COUNT 4
|
||||
uint16_t mode_chase_flash(void) {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
unsigned flash_step = SEGENV.call % ((FLASH_COUNT * 2) + 1);
|
||||
|
||||
for (unsigned i = 0; i < SEGLEN; i++) {
|
||||
@@ -1086,7 +1080,7 @@ static const char _data_FX_MODE_CHASE_FLASH[] PROGMEM = "Chase Flash@!;Bg,Fx;!";
|
||||
* Prim flashes running, followed by random color.
|
||||
*/
|
||||
uint16_t mode_chase_flash_random(void) {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
unsigned flash_step = SEGENV.call % ((FLASH_COUNT * 2) + 1);
|
||||
|
||||
for (int i = 0; i < SEGENV.aux1; i++) {
|
||||
@@ -1168,7 +1162,7 @@ static const char _data_FX_MODE_RUNNING_RANDOM[] PROGMEM = "Stream@!,Zone size;;
|
||||
* K.I.T.T.
|
||||
*/
|
||||
uint16_t mode_larson_scanner(void) {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
|
||||
const unsigned speed = FRAMETIME * map(SEGMENT.speed, 0, 255, 96, 2); // map into useful range
|
||||
const unsigned pixels = SEGLEN / speed; // how many pixels to advance per frame
|
||||
@@ -1226,7 +1220,7 @@ static const char _data_FX_MODE_DUAL_LARSON_SCANNER[] PROGMEM = "Scanner Dual@!,
|
||||
* Firing comets from one end. "Lighthouse"
|
||||
*/
|
||||
uint16_t mode_comet(void) {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
unsigned counter = (strip.now * ((SEGMENT.speed >>2) +1)) & 0xFFFF;
|
||||
unsigned index = (counter * SEGLEN) >> 16;
|
||||
if (SEGENV.call == 0) SEGENV.aux0 = index;
|
||||
@@ -1254,7 +1248,7 @@ static const char _data_FX_MODE_COMET[] PROGMEM = "Lighthouse@!,Fade rate;!,!;!"
|
||||
* Fireworks function.
|
||||
*/
|
||||
uint16_t mode_fireworks() {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
const uint16_t width = SEGMENT.is2D() ? SEG_W : SEGLEN;
|
||||
const uint16_t height = SEG_H;
|
||||
|
||||
@@ -1296,7 +1290,7 @@ static const char _data_FX_MODE_FIREWORKS[] PROGMEM = "Fireworks@,Frequency;!,!;
|
||||
|
||||
//Twinkling LEDs running. Inspired by https://github.com/kitesurfer1404/WS2812FX/blob/master/src/custom/Rain.h
|
||||
uint16_t mode_rain() {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
const unsigned width = SEG_W;
|
||||
const unsigned height = SEG_H;
|
||||
SEGENV.step += FRAMETIME;
|
||||
@@ -1362,7 +1356,7 @@ static const char _data_FX_MODE_FIRE_FLICKER[] PROGMEM = "Fire Flicker@!,!;!;!;0
|
||||
* Gradient run base function
|
||||
*/
|
||||
uint16_t gradient_base(bool loading) {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
uint16_t counter = strip.now * ((SEGMENT.speed >> 2) + 1);
|
||||
uint16_t pp = (counter * SEGLEN) >> 16;
|
||||
if (SEGENV.call == 0) pp = 0;
|
||||
@@ -1407,7 +1401,7 @@ static const char _data_FX_MODE_LOADING[] PROGMEM = "Loading@!,Fade;!,!;!;;ix=16
|
||||
* Two dots running
|
||||
*/
|
||||
uint16_t mode_two_dots() {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
unsigned delay = 1 + (FRAMETIME<<3) / SEGLEN; // longer segments should change faster
|
||||
uint32_t it = strip.now / map(SEGMENT.speed, 0, 255, delay<<4, delay);
|
||||
unsigned offset = it % SEGLEN;
|
||||
@@ -1827,7 +1821,7 @@ uint16_t mode_oscillate(void) {
|
||||
// if the counter has increased, move the oscillator by the random step
|
||||
if (it != SEGENV.step) oscillators[i].pos += oscillators[i].dir * oscillators[i].speed;
|
||||
oscillators[i].size = SEGLEN/(3+SEGMENT.intensity/8);
|
||||
if((oscillators[i].dir == -1) && (oscillators[i].pos <= 0)) {
|
||||
if((oscillators[i].dir == -1) && (oscillators[i].pos > SEGLEN << 1)) { // use integer overflow
|
||||
oscillators[i].pos = 0;
|
||||
oscillators[i].dir = 1;
|
||||
// make bigger steps for faster speeds
|
||||
@@ -1843,7 +1837,7 @@ uint16_t mode_oscillate(void) {
|
||||
for (unsigned i = 0; i < SEGLEN; i++) {
|
||||
uint32_t color = BLACK;
|
||||
for (unsigned j = 0; j < numOscillators; j++) {
|
||||
if(i >= (unsigned)oscillators[j].pos - oscillators[j].size && i <= oscillators[j].pos + oscillators[j].size) {
|
||||
if((int)i >= (int)oscillators[j].pos - oscillators[j].size && i <= oscillators[j].pos + oscillators[j].size) {
|
||||
color = (color == BLACK) ? SEGCOLOR(j) : color_blend(color, SEGCOLOR(j), uint8_t(128));
|
||||
}
|
||||
}
|
||||
@@ -1858,7 +1852,7 @@ static const char _data_FX_MODE_OSCILLATE[] PROGMEM = "Oscillate";
|
||||
|
||||
//TODO
|
||||
uint16_t mode_lightning(void) {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
unsigned ledstart = hw_random16(SEGLEN); // Determine starting location of flash
|
||||
unsigned ledlen = 1 + hw_random16(SEGLEN -ledstart); // Determine length of flash (not to go beyond NUM_LEDS-1)
|
||||
uint8_t bri = 255/hw_random8(1, 3);
|
||||
@@ -1899,52 +1893,76 @@ uint16_t mode_lightning(void) {
|
||||
}
|
||||
static const char _data_FX_MODE_LIGHTNING[] PROGMEM = "Lightning@!,!,,,,,Overlay;!,!;!";
|
||||
|
||||
|
||||
// Pride2015
|
||||
// Animated, ever-changing rainbows.
|
||||
// by Mark Kriegsman: https://gist.github.com/kriegsman/964de772d64c502760e5
|
||||
uint16_t mode_pride_2015(void) {
|
||||
// combined function from original pride and colorwaves
|
||||
uint16_t mode_colorwaves_pride_base(bool isPride2015) {
|
||||
unsigned duration = 10 + SEGMENT.speed;
|
||||
unsigned sPseudotime = SEGENV.step;
|
||||
unsigned sHue16 = SEGENV.aux0;
|
||||
|
||||
uint8_t sat8 = beatsin88_t( 87, 220, 250);
|
||||
uint8_t brightdepth = beatsin88_t( 341, 96, 224);
|
||||
unsigned brightnessthetainc16 = beatsin88_t( 203, (25 * 256), (40 * 256));
|
||||
uint8_t sat8 = isPride2015 ? beatsin88_t(87, 220, 250) : 255;
|
||||
unsigned brightdepth = beatsin88_t(341, 96, 224);
|
||||
unsigned brightnessthetainc16 = beatsin88_t(203, (25 * 256), (40 * 256));
|
||||
unsigned msmultiplier = beatsin88_t(147, 23, 60);
|
||||
|
||||
unsigned hue16 = sHue16;//gHue * 256;
|
||||
unsigned hueinc16 = beatsin88_t(113, 1, 3000);
|
||||
unsigned hue16 = sHue16;
|
||||
unsigned hueinc16 = isPride2015 ? beatsin88_t(113, 1, 3000) :
|
||||
beatsin88_t(113, 60, 300) * SEGMENT.intensity * 10 / 255;
|
||||
|
||||
sPseudotime += duration * msmultiplier;
|
||||
sHue16 += duration * beatsin88_t( 400, 5,9);
|
||||
sHue16 += duration * beatsin88_t(400, 5, 9);
|
||||
unsigned brightnesstheta16 = sPseudotime;
|
||||
|
||||
for (unsigned i = 0 ; i < SEGLEN; i++) {
|
||||
for (unsigned i = 0; i < SEGLEN; i++) {
|
||||
hue16 += hueinc16;
|
||||
uint8_t hue8 = hue16 >> 8;
|
||||
uint8_t hue8;
|
||||
|
||||
brightnesstheta16 += brightnessthetainc16;
|
||||
unsigned b16 = sin16_t( brightnesstheta16 ) + 32768;
|
||||
if (isPride2015) {
|
||||
hue8 = hue16 >> 8;
|
||||
} else {
|
||||
unsigned h16_128 = hue16 >> 7;
|
||||
hue8 = (h16_128 & 0x100) ? (255 - (h16_128 >> 1)) : (h16_128 >> 1);
|
||||
}
|
||||
|
||||
brightnesstheta16 += brightnessthetainc16;
|
||||
unsigned b16 = sin16_t(brightnesstheta16) + 32768;
|
||||
unsigned bri16 = (uint32_t)((uint32_t)b16 * (uint32_t)b16) / 65536;
|
||||
uint8_t bri8 = (uint32_t)(((uint32_t)bri16) * brightdepth) / 65536;
|
||||
bri8 += (255 - brightdepth);
|
||||
|
||||
CRGB newcolor = CHSV(hue8, sat8, bri8);
|
||||
SEGMENT.blendPixelColor(i, newcolor, 64);
|
||||
if (isPride2015) {
|
||||
CRGB newcolor = CHSV(hue8, sat8, bri8);
|
||||
SEGMENT.blendPixelColor(i, newcolor, 64);
|
||||
} else {
|
||||
SEGMENT.blendPixelColor(i, SEGMENT.color_from_palette(hue8, false, PALETTE_SOLID_WRAP, 0, bri8), 128);
|
||||
}
|
||||
}
|
||||
|
||||
SEGENV.step = sPseudotime;
|
||||
SEGENV.aux0 = sHue16;
|
||||
|
||||
return FRAMETIME;
|
||||
}
|
||||
|
||||
// Pride2015
|
||||
// Animated, ever-changing rainbows.
|
||||
// by Mark Kriegsman: https://gist.github.com/kriegsman/964de772d64c502760e5
|
||||
uint16_t mode_pride_2015(void) {
|
||||
return mode_colorwaves_pride_base(true);
|
||||
}
|
||||
static const char _data_FX_MODE_PRIDE_2015[] PROGMEM = "Pride 2015@!;;";
|
||||
|
||||
// ColorWavesWithPalettes by Mark Kriegsman: https://gist.github.com/kriegsman/8281905786e8b2632aeb
|
||||
// This function draws color waves with an ever-changing,
|
||||
// widely-varying set of parameters, using a color palette.
|
||||
uint16_t mode_colorwaves() {
|
||||
return mode_colorwaves_pride_base(false);
|
||||
}
|
||||
static const char _data_FX_MODE_COLORWAVES[] PROGMEM = "Colorwaves@!,Hue;!;!;;pal=26";
|
||||
|
||||
|
||||
//eight colored dots, weaving in and out of sync with each other
|
||||
uint16_t mode_juggle(void) {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
|
||||
SEGMENT.fadeToBlackBy(192 - (3*SEGMENT.intensity/4));
|
||||
CRGB fastled_col;
|
||||
@@ -2032,7 +2050,7 @@ uint16_t mode_palette() {
|
||||
const mathType sourceX = xtSinTheta + ytCosTheta + centerX;
|
||||
// The computation was scaled just right so that the result should always be in range [0, maxXOut], but enforce this anyway
|
||||
// to account for imprecision. Then scale it so that the range is [0, 255], which we can use with the palette.
|
||||
int colorIndex = (std::min(std::max(sourceX, mathType(0)), maxXOut * sInt16Scale) * 255) / (sInt16Scale * maxXOut);
|
||||
int colorIndex = (std::min(std::max(sourceX, mathType(0)), maxXOut * sInt16Scale) * wideMathType(255)) / (sInt16Scale * maxXOut);
|
||||
// inputSize determines by how much we want to scale the palette:
|
||||
// values < 128 display a fraction of a palette,
|
||||
// values > 128 display multiple palettes.
|
||||
@@ -2089,7 +2107,7 @@ static const char _data_FX_MODE_PALETTE[] PROGMEM = "Palette@Shift,Size,Rotation
|
||||
// feel of your fire: COOLING (used in step 1 above) (Speed = COOLING), and SPARKING (used
|
||||
// in step 3 above) (Effect Intensity = Sparking).
|
||||
uint16_t mode_fire_2012() {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
const unsigned strips = SEGMENT.nrOfVStrips();
|
||||
if (!SEGENV.allocateData(strips * SEGLEN)) return mode_static(); //allocation failed
|
||||
byte* heat = SEGENV.data;
|
||||
@@ -2147,53 +2165,6 @@ uint16_t mode_fire_2012() {
|
||||
}
|
||||
static const char _data_FX_MODE_FIRE_2012[] PROGMEM = "Fire 2012@Cooling,Spark rate,,2D Blur,Boost;;!;1;pal=35,sx=64,ix=160,m12=1,c2=128"; // bars
|
||||
|
||||
|
||||
// ColorWavesWithPalettes by Mark Kriegsman: https://gist.github.com/kriegsman/8281905786e8b2632aeb
|
||||
// This function draws color waves with an ever-changing,
|
||||
// widely-varying set of parameters, using a color palette.
|
||||
uint16_t mode_colorwaves() {
|
||||
unsigned duration = 10 + SEGMENT.speed;
|
||||
unsigned sPseudotime = SEGENV.step;
|
||||
unsigned sHue16 = SEGENV.aux0;
|
||||
|
||||
unsigned brightdepth = beatsin88_t(341, 96, 224);
|
||||
unsigned brightnessthetainc16 = beatsin88_t( 203, (25 * 256), (40 * 256));
|
||||
unsigned msmultiplier = beatsin88_t(147, 23, 60);
|
||||
|
||||
unsigned hue16 = sHue16;//gHue * 256;
|
||||
unsigned hueinc16 = beatsin88_t(113, 60, 300)*SEGMENT.intensity*10/255; // Use the Intensity Slider for the hues
|
||||
|
||||
sPseudotime += duration * msmultiplier;
|
||||
sHue16 += duration * beatsin88_t(400, 5, 9);
|
||||
unsigned brightnesstheta16 = sPseudotime;
|
||||
|
||||
for (unsigned i = 0 ; i < SEGLEN; i++) {
|
||||
hue16 += hueinc16;
|
||||
uint8_t hue8 = hue16 >> 8;
|
||||
unsigned h16_128 = hue16 >> 7;
|
||||
if ( h16_128 & 0x100) {
|
||||
hue8 = 255 - (h16_128 >> 1);
|
||||
} else {
|
||||
hue8 = h16_128 >> 1;
|
||||
}
|
||||
|
||||
brightnesstheta16 += brightnessthetainc16;
|
||||
unsigned b16 = sin16_t(brightnesstheta16) + 32768;
|
||||
|
||||
unsigned bri16 = (uint32_t)((uint32_t)b16 * (uint32_t)b16) / 65536;
|
||||
uint8_t bri8 = (uint32_t)(((uint32_t)bri16) * brightdepth) / 65536;
|
||||
bri8 += (255 - brightdepth);
|
||||
|
||||
SEGMENT.blendPixelColor(i, SEGMENT.color_from_palette(hue8, false, PALETTE_SOLID_WRAP, 0, bri8), 128); // 50/50 mix
|
||||
}
|
||||
SEGENV.step = sPseudotime;
|
||||
SEGENV.aux0 = sHue16;
|
||||
|
||||
return FRAMETIME;
|
||||
}
|
||||
static const char _data_FX_MODE_COLORWAVES[] PROGMEM = "Colorwaves@!,Hue;!;!;;pal=26";
|
||||
|
||||
|
||||
// colored stripes pulsing at a defined Beats-Per-Minute (BPM)
|
||||
uint16_t mode_bpm() {
|
||||
uint32_t stp = (strip.now / 20) & 0xFF;
|
||||
@@ -2369,7 +2340,7 @@ static const char _data_FX_MODE_LAKE[] PROGMEM = "Lake@!;Fx;!";
|
||||
// send a meteor from begining to to the end of the strip with a trail that randomly decays.
|
||||
// adapted from https://www.tweaking4all.com/hardware/arduino/adruino-led-strip-effects/#LEDStripEffectMeteorRain
|
||||
uint16_t mode_meteor() {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
if (!SEGENV.allocateData(SEGLEN)) return mode_static(); //allocation failed
|
||||
const bool meteorSmooth = SEGMENT.check3;
|
||||
byte* trail = SEGENV.data;
|
||||
@@ -2436,7 +2407,7 @@ static const char _data_FX_MODE_METEOR[] PROGMEM = "Meteor@!,Trail,,,,Gradient,,
|
||||
|
||||
//Railway Crossing / Christmas Fairy lights
|
||||
uint16_t mode_railway() {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
unsigned dur = (256 - SEGMENT.speed) * 40;
|
||||
uint16_t rampdur = (dur * SEGMENT.intensity) >> 8;
|
||||
if (SEGENV.step > dur)
|
||||
@@ -2537,7 +2508,7 @@ static uint16_t ripple_base(uint8_t blurAmount = 0) {
|
||||
|
||||
|
||||
uint16_t mode_ripple(void) {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
if(SEGMENT.custom1 || SEGMENT.check2) // blur or overlay
|
||||
SEGMENT.fade_out(250);
|
||||
else
|
||||
@@ -2549,7 +2520,7 @@ static const char _data_FX_MODE_RIPPLE[] PROGMEM = "Ripple@!,Wave #,Blur,,,,Over
|
||||
|
||||
|
||||
uint16_t mode_ripple_rainbow(void) {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
if (SEGENV.call ==0) {
|
||||
SEGENV.aux0 = hw_random8();
|
||||
SEGENV.aux1 = hw_random8();
|
||||
@@ -2727,7 +2698,7 @@ uint16_t mode_halloween_eyes()
|
||||
uint32_t blinkEndTime;
|
||||
};
|
||||
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
const unsigned maxWidth = strip.isMatrix ? SEG_W : SEGLEN;
|
||||
const unsigned HALLOWEEN_EYE_SPACE = MAX(2, strip.isMatrix ? SEG_W>>4: SEGLEN>>5);
|
||||
const unsigned HALLOWEEN_EYE_WIDTH = HALLOWEEN_EYE_SPACE/2;
|
||||
@@ -2912,7 +2883,7 @@ static const char _data_FX_MODE_TRI_STATIC_PATTERN[] PROGMEM = "Solid Pattern Tr
|
||||
|
||||
static uint16_t spots_base(uint16_t threshold)
|
||||
{
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
if (!SEGMENT.check2) SEGMENT.fill(SEGCOLOR(1));
|
||||
|
||||
unsigned maxZones = SEGLEN >> 2;
|
||||
@@ -2968,7 +2939,7 @@ typedef struct Ball {
|
||||
* Bouncing Balls Effect
|
||||
*/
|
||||
uint16_t mode_bouncing_balls(void) {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
//allocate segment data
|
||||
const unsigned strips = SEGMENT.nrOfVStrips(); // adapt for 2D
|
||||
const size_t maxNumBalls = 16;
|
||||
@@ -3146,7 +3117,7 @@ static const char _data_FX_MODE_ROLLINGBALLS[] PROGMEM = "Rolling Balls@!,# of b
|
||||
* Sinelon stolen from FASTLED examples
|
||||
*/
|
||||
static uint16_t sinelon_base(bool dual, bool rainbow=false) {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
SEGMENT.fade_out(SEGMENT.intensity);
|
||||
unsigned pos = beatsin16_t(SEGMENT.speed/10,0,SEGLEN-1);
|
||||
if (SEGENV.call == 0) SEGENV.aux0 = pos;
|
||||
@@ -3251,7 +3222,7 @@ typedef struct Spark {
|
||||
* modified from https://github.com/kitesurfer1404/WS2812FX/blob/master/src/custom/Popcorn.h
|
||||
*/
|
||||
uint16_t mode_popcorn(void) {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
//allocate segment data
|
||||
unsigned strips = SEGMENT.nrOfVStrips();
|
||||
unsigned usablePopcorns = maxNumPopcorn;
|
||||
@@ -3426,7 +3397,7 @@ typedef struct particle {
|
||||
} star;
|
||||
|
||||
uint16_t mode_starburst(void) {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
unsigned maxData = FAIR_DATA_PER_SEG; //ESP8266: 256 ESP32: 640
|
||||
unsigned segs = strip.getActiveSegmentsNum();
|
||||
if (segs <= (strip.getMaxSegments() /2)) maxData *= 2; //ESP8266: 512 if <= 8 segs ESP32: 1280 if <= 16 segs
|
||||
@@ -3545,7 +3516,7 @@ static const char _data_FX_MODE_STARBURST[] PROGMEM = "Fireworks Starburst@Chanc
|
||||
*/
|
||||
uint16_t mode_exploding_fireworks(void)
|
||||
{
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
const int cols = SEGMENT.is2D() ? SEG_W : 1;
|
||||
const int rows = SEGMENT.is2D() ? SEG_H : SEGLEN;
|
||||
|
||||
@@ -3683,7 +3654,7 @@ static const char _data_FX_MODE_EXPLODING_FIREWORKS[] PROGMEM = "Fireworks 1D@Gr
|
||||
*/
|
||||
uint16_t mode_drip(void)
|
||||
{
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
//allocate segment data
|
||||
unsigned strips = SEGMENT.nrOfVStrips();
|
||||
const int maxNumDrops = 4;
|
||||
@@ -3779,7 +3750,7 @@ typedef struct Tetris {
|
||||
} tetris;
|
||||
|
||||
uint16_t mode_tetrix(void) {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
unsigned strips = SEGMENT.nrOfVStrips(); // allow running on virtual strips (columns in 2D segment)
|
||||
unsigned dataSize = sizeof(tetris);
|
||||
if (!SEGENV.allocateData(dataSize * strips)) return mode_static(); //allocation failed
|
||||
@@ -3990,7 +3961,7 @@ static const char _data_FX_MODE_HEARTBEAT[] PROGMEM = "Heartbeat@!,!;!,!;!;01;m1
|
||||
// Modified for WLED, based on https://github.com/FastLED/FastLED/blob/master/examples/Pacifica/Pacifica.ino
|
||||
//
|
||||
// Add one layer of waves into the led array
|
||||
static CRGB pacifica_one_layer(uint16_t i, CRGBPalette16& p, uint16_t cistart, uint16_t wavescale, uint8_t bri, uint16_t ioff)
|
||||
static CRGB pacifica_one_layer(uint16_t i, const CRGBPalette16& p, uint16_t cistart, uint16_t wavescale, uint8_t bri, uint16_t ioff)
|
||||
{
|
||||
unsigned ci = cistart;
|
||||
unsigned waveangle = ioff;
|
||||
@@ -4086,7 +4057,7 @@ static const char _data_FX_MODE_PACIFICA[] PROGMEM = "Pacifica@!,Angle;;!;;pal=5
|
||||
* Mode simulates a gradual sunrise
|
||||
*/
|
||||
uint16_t mode_sunrise() {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
//speed 0 - static sun
|
||||
//speed 1 - 60: sunrise time in minutes
|
||||
//speed 60 - 120 : sunset time in minutes - 60;
|
||||
@@ -4293,7 +4264,7 @@ static const char _data_FX_MODE_FLOW[] PROGMEM = "Flow@!,Zones;;!;;m12=1"; //ver
|
||||
*/
|
||||
uint16_t mode_chunchun(void)
|
||||
{
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
SEGMENT.fade_out(254); // add a bit of trail
|
||||
unsigned counter = strip.now * (6 + (SEGMENT.speed >> 4));
|
||||
unsigned numBirds = 2 + (SEGLEN >> 3); // 2 + 1/8 of a segment
|
||||
@@ -4344,7 +4315,7 @@ typedef struct Spotlight {
|
||||
*/
|
||||
uint16_t mode_dancing_shadows(void)
|
||||
{
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
unsigned numSpotlights = map(SEGMENT.intensity, 0, 255, 2, SPOT_MAX_COUNT); // 49 on 32 segment ESP32, 17 on 16 segment ESP8266
|
||||
bool initialize = SEGENV.aux0 != numSpotlights;
|
||||
SEGENV.aux0 = numSpotlights;
|
||||
@@ -4806,7 +4777,7 @@ static const char _data_FX_MODE_AURORA[] PROGMEM = "Aurora@!,!;1,2,3;!;;sx=24,pa
|
||||
// 16 bit perlinmove. Use Perlin Noise instead of sinewaves for movement. By Andrew Tuline.
|
||||
// Controls are speed, # of pixels, faderate.
|
||||
uint16_t mode_perlinmove(void) {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
SEGMENT.fade_out(255-SEGMENT.custom1);
|
||||
for (int i = 0; i < SEGMENT.intensity/16 + 1; i++) {
|
||||
unsigned locn = inoise16(strip.now*128/(260-SEGMENT.speed)+i*15000, strip.now*128/(260-SEGMENT.speed)); // Get a new pixel location from moving noise.
|
||||
@@ -4842,7 +4813,7 @@ static const char _data_FX_MODE_WAVESINS[] PROGMEM = "Wavesins@!,Brightness vari
|
||||
//////////////////////////////
|
||||
// By: ldirko https://editor.soulmatelights.com/gallery/392-flow-led-stripe , modifed by: Andrew Tuline
|
||||
uint16_t mode_FlowStripe(void) {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
const int hl = SEGLEN * 10 / 13;
|
||||
uint8_t hue = strip.now / (SEGMENT.speed+1);
|
||||
uint32_t t = strip.now / (SEGMENT.intensity/8+1);
|
||||
@@ -6568,23 +6539,31 @@ static const char _data_FX_MODE_JUGGLES[] PROGMEM = "Juggles@!,# of balls;!,!;!;
|
||||
// * MATRIPIX //
|
||||
//////////////////////
|
||||
uint16_t mode_matripix(void) { // Matripix. By Andrew Tuline.
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
// even with 1D effect we have to take logic for 2D segments for allocation as fill_solid() fills whole segment
|
||||
// effect can work on single pixels, we just lose the shifting effect
|
||||
unsigned dataSize = sizeof(uint32_t) * SEGLEN;
|
||||
if (!SEGENV.allocateData(dataSize)) return mode_static(); //allocation failed
|
||||
uint32_t* pixels = reinterpret_cast<uint32_t*>(SEGENV.data);
|
||||
|
||||
um_data_t *um_data = getAudioData();
|
||||
int volumeRaw = *(int16_t*)um_data->u_data[1];
|
||||
|
||||
if (SEGENV.call == 0) {
|
||||
SEGMENT.fill(BLACK);
|
||||
for (unsigned i = 0; i < SEGLEN; i++) pixels[i] = BLACK; // may not be needed as resetIfRequired() clears buffer
|
||||
}
|
||||
|
||||
uint8_t secondHand = micros()/(256-SEGMENT.speed)/500 % 16;
|
||||
if(SEGENV.aux0 != secondHand) {
|
||||
SEGENV.aux0 = secondHand;
|
||||
|
||||
uint8_t pixBri = volumeRaw * SEGMENT.intensity / 64;
|
||||
for (unsigned i = 0; i < SEGLEN-1; i++) SEGMENT.setPixelColor(i, SEGMENT.getPixelColor(i+1)); // shift left
|
||||
SEGMENT.setPixelColor(SEGLEN-1, color_blend(SEGCOLOR(1), SEGMENT.color_from_palette(strip.now, false, PALETTE_SOLID_WRAP, 0), pixBri));
|
||||
int pixBri = volumeRaw * SEGMENT.intensity / 64;
|
||||
unsigned k = SEGLEN-1;
|
||||
// loop will not execute if SEGLEN equals 1
|
||||
for (unsigned i = 0; i < k; i++) {
|
||||
pixels[i] = pixels[i+1]; // shift left
|
||||
SEGMENT.setPixelColor(i, pixels[i]);
|
||||
}
|
||||
pixels[k] = color_blend(SEGCOLOR(1), SEGMENT.color_from_palette(strip.now, false, PALETTE_SOLID_WRAP, 0), pixBri);
|
||||
SEGMENT.setPixelColor(k, pixels[k]);
|
||||
}
|
||||
|
||||
return FRAMETIME;
|
||||
@@ -6596,7 +6575,7 @@ static const char _data_FX_MODE_MATRIPIX[] PROGMEM = "Matripix@!,Brightness;!,!;
|
||||
// * MIDNOISE //
|
||||
//////////////////////
|
||||
uint16_t mode_midnoise(void) { // Midnoise. By Andrew Tuline.
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
// Changing xdist to SEGENV.aux0 and ydist to SEGENV.aux1.
|
||||
|
||||
um_data_t *um_data = getAudioData();
|
||||
@@ -6687,7 +6666,7 @@ static const char _data_FX_MODE_NOISEMETER[] PROGMEM = "Noisemeter@Fade rate,Wid
|
||||
// * PIXELWAVE //
|
||||
//////////////////////
|
||||
uint16_t mode_pixelwave(void) { // Pixelwave. By Andrew Tuline.
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
// even with 1D effect we have to take logic for 2D segments for allocation as fill_solid() fills whole segment
|
||||
|
||||
if (SEGENV.call == 0) {
|
||||
@@ -6755,7 +6734,7 @@ static const char _data_FX_MODE_PLASMOID[] PROGMEM = "Plasmoid@Phase,# of pixels
|
||||
//////////////////////
|
||||
// Puddles/Puddlepeak By Andrew Tuline. Merged by @dedehai
|
||||
uint16_t mode_puddles_base(bool peakdetect) {
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
unsigned size = 0;
|
||||
uint8_t fadeVal = map(SEGMENT.speed, 0, 255, 224, 254);
|
||||
unsigned pos = hw_random16(SEGLEN); // Set a random starting position.
|
||||
@@ -6805,7 +6784,7 @@ static const char _data_FX_MODE_PUDDLES[] PROGMEM = "Puddles@Fade rate,Puddle si
|
||||
// * PIXELS //
|
||||
//////////////////////
|
||||
uint16_t mode_pixels(void) { // Pixels. By Andrew Tuline.
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
|
||||
if (!SEGENV.allocateData(32*sizeof(uint8_t))) return mode_static(); //allocation failed
|
||||
uint8_t *myVals = reinterpret_cast<uint8_t*>(SEGENV.data); // Used to store a pile of samples because WLED frame rate and WLED sample rate are not synchronized. Frame rate is too low.
|
||||
@@ -6833,7 +6812,7 @@ static const char _data_FX_MODE_PIXELS[] PROGMEM = "Pixels@Fade rate,# of pixels
|
||||
// ** Blurz //
|
||||
//////////////////////
|
||||
uint16_t mode_blurz(void) { // Blurz. By Andrew Tuline.
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
// even with 1D effect we have to take logic for 2D segments for allocation as fill_solid() fills whole segment
|
||||
|
||||
um_data_t *um_data = getAudioData();
|
||||
@@ -6897,7 +6876,7 @@ static const char _data_FX_MODE_DJLIGHT[] PROGMEM = "DJ Light@Speed;;;01f;m12=2,
|
||||
// ** Freqmap //
|
||||
////////////////////
|
||||
uint16_t mode_freqmap(void) { // Map FFT_MajorPeak to SEGLEN. Would be better if a higher framerate.
|
||||
if (SEGLEN == 1) return mode_static();
|
||||
if (SEGLEN <= 1) return mode_static();
|
||||
// Start frequency = 60 Hz and log10(60) = 1.78
|
||||
// End frequency = MAX_FREQUENCY in Hz and lo10(MAX_FREQUENCY) = MAX_FREQ_LOG10
|
||||
|
||||
@@ -7139,8 +7118,11 @@ static const char _data_FX_MODE_ROCKTAVES[] PROGMEM = "Rocktaves@;!,!;!;01f;m12=
|
||||
// Combines peak detection with FFT_MajorPeak and FFT_Magnitude.
|
||||
uint16_t mode_waterfall(void) { // Waterfall. By: Andrew Tuline
|
||||
// effect can work on single pixels, we just lose the shifting effect
|
||||
|
||||
um_data_t *um_data = getAudioData();
|
||||
unsigned dataSize = sizeof(uint32_t) * SEGLEN;
|
||||
if (!SEGENV.allocateData(dataSize)) return mode_static(); //allocation failed
|
||||
uint32_t* pixels = reinterpret_cast<uint32_t*>(SEGENV.data);
|
||||
|
||||
um_data_t *um_data = getAudioData();
|
||||
uint8_t samplePeak = *(uint8_t*)um_data->u_data[3];
|
||||
float FFT_MajorPeak = *(float*) um_data->u_data[4];
|
||||
uint8_t *maxVol = (uint8_t*)um_data->u_data[6];
|
||||
@@ -7150,7 +7132,7 @@ uint16_t mode_waterfall(void) { // Waterfall. By: Andrew Tulin
|
||||
if (FFT_MajorPeak < 1) FFT_MajorPeak = 1; // log10(0) is "forbidden" (throws exception)
|
||||
|
||||
if (SEGENV.call == 0) {
|
||||
SEGMENT.fill(BLACK);
|
||||
for (unsigned i = 0; i < SEGLEN; i++) pixels[i] = BLACK; // may not be needed as resetIfRequired() clears buffer
|
||||
SEGENV.aux0 = 255;
|
||||
SEGMENT.custom1 = *binNum;
|
||||
SEGMENT.custom2 = *maxVol * 2;
|
||||
@@ -7167,13 +7149,18 @@ uint16_t mode_waterfall(void) { // Waterfall. By: Andrew Tulin
|
||||
uint8_t pixCol = (log10f(FFT_MajorPeak) - 2.26f) * 150; // 22Khz sampling - log10 frequency range is from 2.26 (182hz) to 3.967 (9260hz). Let's scale accordingly.
|
||||
if (FFT_MajorPeak < 182.0f) pixCol = 0; // handle underflow
|
||||
|
||||
unsigned k = SEGLEN-1;
|
||||
if (samplePeak) {
|
||||
SEGMENT.setPixelColor(SEGLEN-1, CHSV(92,92,92));
|
||||
pixels[k] = (uint32_t)CRGB(CHSV(92,92,92));
|
||||
} else {
|
||||
SEGMENT.setPixelColor(SEGLEN-1, color_blend(SEGCOLOR(1), SEGMENT.color_from_palette(pixCol+SEGMENT.intensity, false, PALETTE_SOLID_WRAP, 0), (uint8_t)my_magnitude));
|
||||
pixels[k] = color_blend(SEGCOLOR(1), SEGMENT.color_from_palette(pixCol+SEGMENT.intensity, false, PALETTE_SOLID_WRAP, 0), (uint8_t)my_magnitude);
|
||||
}
|
||||
SEGMENT.setPixelColor(k, pixels[k]);
|
||||
// loop will not execute if SEGLEN equals 1
|
||||
for (unsigned i = 0; i < SEGLEN-1; i++) SEGMENT.setPixelColor(i, SEGMENT.getPixelColor(i+1)); // shift left
|
||||
for (unsigned i = 0; i < k; i++) {
|
||||
pixels[i] = pixels[i+1]; // shift left
|
||||
SEGMENT.setPixelColor(i, pixels[i]);
|
||||
}
|
||||
}
|
||||
|
||||
return FRAMETIME;
|
||||
|
||||
93
wled00/FX.h
93
wled00/FX.h
@@ -1,3 +1,4 @@
|
||||
#pragma once
|
||||
/*
|
||||
WS2812FX.h - Library for WS2812 LED effects.
|
||||
Harm Aldick - 2016
|
||||
@@ -8,12 +9,15 @@
|
||||
Adapted from code originally licensed under the MIT license
|
||||
|
||||
Modified for WLED
|
||||
|
||||
Segment class/struct (c) 2022 Blaz Kristan (@blazoncek)
|
||||
*/
|
||||
|
||||
#ifndef WS2812FX_h
|
||||
#define WS2812FX_h
|
||||
|
||||
#include <vector>
|
||||
#include "wled.h"
|
||||
|
||||
#include "const.h"
|
||||
#include "bus_manager.h"
|
||||
@@ -71,18 +75,15 @@ extern byte realtimeMode; // used in getMappedPixelIndex()
|
||||
/* each segment uses 82 bytes of SRAM memory, so if you're application fails because of
|
||||
insufficient memory, decreasing MAX_NUM_SEGMENTS may help */
|
||||
#ifdef ESP8266
|
||||
#define MAX_NUM_SEGMENTS 16
|
||||
#define MAX_NUM_SEGMENTS 16
|
||||
/* How much data bytes all segments combined may allocate */
|
||||
#define MAX_SEGMENT_DATA 5120
|
||||
#elif defined(CONFIG_IDF_TARGET_ESP32S2)
|
||||
#define MAX_NUM_SEGMENTS 20
|
||||
#define MAX_SEGMENT_DATA (MAX_NUM_SEGMENTS*512) // 10k by default (S2 is short on free RAM)
|
||||
#else
|
||||
#ifndef MAX_NUM_SEGMENTS
|
||||
#define MAX_NUM_SEGMENTS 32
|
||||
#endif
|
||||
#if defined(ARDUINO_ARCH_ESP32S2)
|
||||
#define MAX_SEGMENT_DATA MAX_NUM_SEGMENTS*768 // 24k by default (S2 is short on free RAM)
|
||||
#else
|
||||
#define MAX_SEGMENT_DATA MAX_NUM_SEGMENTS*1280 // 40k by default
|
||||
#endif
|
||||
#define MAX_NUM_SEGMENTS 32 // warning: going beyond 32 may consume too much RAM for stable operation
|
||||
#define MAX_SEGMENT_DATA (MAX_NUM_SEGMENTS*1280) // 40k by default
|
||||
#endif
|
||||
|
||||
/* How much data bytes each segment should max allocate to leave enough space for other segments,
|
||||
@@ -460,7 +461,7 @@ typedef struct Segment {
|
||||
{}
|
||||
} *_t;
|
||||
|
||||
[[gnu::hot]] void _setPixelColorXY_raw(int& x, int& y, uint32_t& col); // set pixel without mapping (internal use only)
|
||||
[[gnu::hot]] void _setPixelColorXY_raw(const int& x, const int& y, uint32_t& col) const; // set pixel without mapping (internal use only)
|
||||
|
||||
public:
|
||||
|
||||
@@ -518,7 +519,7 @@ typedef struct Segment {
|
||||
//if (data) Serial.printf(" %d->(%p)", (int)_dataLen, data);
|
||||
//Serial.println();
|
||||
#endif
|
||||
if (name) { delete[] name; name = nullptr; }
|
||||
if (name) { free(name); name = nullptr; }
|
||||
stopTransition();
|
||||
deallocateData();
|
||||
}
|
||||
@@ -534,7 +535,6 @@ typedef struct Segment {
|
||||
inline bool isSelected() const { return selected; }
|
||||
inline bool isInTransition() const { return _t != nullptr; }
|
||||
inline bool isActive() const { return stop > start; }
|
||||
inline bool is2D() const { return (width()>1 && height()>1); }
|
||||
inline bool hasRGB() const { return _isRGB; }
|
||||
inline bool hasWhite() const { return _hasW; }
|
||||
inline bool isCCT() const { return _isCCT; }
|
||||
@@ -544,6 +544,8 @@ typedef struct Segment {
|
||||
inline uint16_t groupLength() const { return grouping + spacing; }
|
||||
inline uint8_t getLightCapabilities() const { return _capabilities; }
|
||||
inline void deactivate() { setGeometry(0,0); }
|
||||
inline Segment &clearName() { if (name) free(name); name = nullptr; return *this; }
|
||||
inline Segment &setName(const String &name) { return setName(name.c_str()); }
|
||||
|
||||
inline static unsigned getUsedSegmentData() { return Segment::_usedSegmentData; }
|
||||
inline static void addUsedSegmentData(int len) { Segment::_usedSegmentData += len; }
|
||||
@@ -566,6 +568,7 @@ typedef struct Segment {
|
||||
Segment &setOption(uint8_t n, bool val);
|
||||
Segment &setMode(uint8_t fx, bool loadDefaults = false);
|
||||
Segment &setPalette(uint8_t pal);
|
||||
Segment &setName(const char* name);
|
||||
uint8_t differs(const Segment& b) const;
|
||||
void refreshLightCapabilities();
|
||||
|
||||
@@ -588,10 +591,10 @@ typedef struct Segment {
|
||||
inline void handleTransition() { updateTransitionProgress(); if (progress() == 0xFFFFU) stopTransition(); }
|
||||
#ifndef WLED_DISABLE_MODE_BLEND
|
||||
void swapSegenv(tmpsegd_t &tmpSegD); // copies segment data into specifed buffer, if buffer is not a transition buffer, segment data is overwritten from transition buffer
|
||||
void restoreSegenv(tmpsegd_t &tmpSegD); // restores segment data from buffer, if buffer is not transition buffer, changed values are copied to transition buffer
|
||||
void restoreSegenv(const tmpsegd_t &tmpSegD); // restores segment data from buffer, if buffer is not transition buffer, changed values are copied to transition buffer
|
||||
#endif
|
||||
[[gnu::hot]] void updateTransitionProgress(); // set current progression of transition
|
||||
inline uint16_t progress() const { return _transitionprogress; }; // transition progression between 0-65535
|
||||
inline uint16_t progress() const { return Segment::_transitionprogress; } // transition progression between 0-65535
|
||||
[[gnu::hot]] uint8_t currentBri(bool useCct = false) const; // current segment brightness/CCT (blended while in transition)
|
||||
uint8_t currentMode() const; // currently active effect/mode (while in transition)
|
||||
[[gnu::hot]] uint32_t currentColor(uint8_t slot) const; // currently active segment color (blended while in transition)
|
||||
@@ -599,14 +602,14 @@ typedef struct Segment {
|
||||
|
||||
// 1D strip
|
||||
[[gnu::hot]] uint16_t virtualLength() const;
|
||||
[[gnu::hot]] void setPixelColor(int n, uint32_t c); // set relative pixel within segment with color
|
||||
inline void setPixelColor(unsigned n, uint32_t c) { setPixelColor(int(n), c); }
|
||||
inline void setPixelColor(int n, byte r, byte g, byte b, byte w = 0) { setPixelColor(n, RGBW32(r,g,b,w)); }
|
||||
inline void setPixelColor(int n, CRGB c) { setPixelColor(n, RGBW32(c.r,c.g,c.b,0)); }
|
||||
[[gnu::hot]] void setPixelColor(int i, uint32_t c) const; // set relative pixel within segment with color
|
||||
inline void setPixelColor(unsigned n, uint32_t c) const { setPixelColor(int(n), c); }
|
||||
inline void setPixelColor(int n, byte r, byte g, byte b, byte w = 0) const { setPixelColor(n, RGBW32(r,g,b,w)); }
|
||||
inline void setPixelColor(int n, CRGB c) const { setPixelColor(n, RGBW32(c.r,c.g,c.b,0)); }
|
||||
#ifdef WLED_USE_AA_PIXELS
|
||||
void setPixelColor(float i, uint32_t c, bool aa = true);
|
||||
inline void setPixelColor(float i, uint8_t r, uint8_t g, uint8_t b, uint8_t w = 0, bool aa = true) { setPixelColor(i, RGBW32(r,g,b,w), aa); }
|
||||
inline void setPixelColor(float i, CRGB c, bool aa = true) { setPixelColor(i, RGBW32(c.r,c.g,c.b,0), aa); }
|
||||
void setPixelColor(float i, uint32_t c, bool aa = true) const;
|
||||
inline void setPixelColor(float i, uint8_t r, uint8_t g, uint8_t b, uint8_t w = 0, bool aa = true) const { setPixelColor(i, RGBW32(r,g,b,w), aa); }
|
||||
inline void setPixelColor(float i, CRGB c, bool aa = true) const { setPixelColor(i, RGBW32(c.r,c.g,c.b,0), aa); }
|
||||
#endif
|
||||
[[gnu::hot]] uint32_t getPixelColor(int i) const;
|
||||
// 1D support functions (some implement 2D as well)
|
||||
@@ -642,16 +645,17 @@ typedef struct Segment {
|
||||
#endif
|
||||
}
|
||||
#ifndef WLED_DISABLE_2D
|
||||
[[gnu::hot]] uint16_t XY(int x, int y); // support function to get relative index within segment
|
||||
[[gnu::hot]] void setPixelColorXY(int x, int y, uint32_t c); // set relative pixel within segment with color
|
||||
inline void setPixelColorXY(unsigned x, unsigned y, uint32_t c) { setPixelColorXY(int(x), int(y), c); }
|
||||
inline void setPixelColorXY(int x, int y, byte r, byte g, byte b, byte w = 0) { setPixelColorXY(x, y, RGBW32(r,g,b,w)); }
|
||||
inline void setPixelColorXY(int x, int y, CRGB c) { setPixelColorXY(x, y, RGBW32(c.r,c.g,c.b,0)); }
|
||||
inline void setPixelColorXY(unsigned x, unsigned y, CRGB c) { setPixelColorXY(int(x), int(y), RGBW32(c.r,c.g,c.b,0)); }
|
||||
inline bool is2D() const { return (width()>1 && height()>1); }
|
||||
[[gnu::hot]] int XY(int x, int y) const; // support function to get relative index within segment
|
||||
[[gnu::hot]] void setPixelColorXY(int x, int y, uint32_t c) const; // set relative pixel within segment with color
|
||||
inline void setPixelColorXY(unsigned x, unsigned y, uint32_t c) const { setPixelColorXY(int(x), int(y), c); }
|
||||
inline void setPixelColorXY(int x, int y, byte r, byte g, byte b, byte w = 0) const { setPixelColorXY(x, y, RGBW32(r,g,b,w)); }
|
||||
inline void setPixelColorXY(int x, int y, CRGB c) const { setPixelColorXY(x, y, RGBW32(c.r,c.g,c.b,0)); }
|
||||
inline void setPixelColorXY(unsigned x, unsigned y, CRGB c) const { setPixelColorXY(int(x), int(y), RGBW32(c.r,c.g,c.b,0)); }
|
||||
#ifdef WLED_USE_AA_PIXELS
|
||||
void setPixelColorXY(float x, float y, uint32_t c, bool aa = true);
|
||||
inline void setPixelColorXY(float x, float y, byte r, byte g, byte b, byte w = 0, bool aa = true) { setPixelColorXY(x, y, RGBW32(r,g,b,w), aa); }
|
||||
inline void setPixelColorXY(float x, float y, CRGB c, bool aa = true) { setPixelColorXY(x, y, RGBW32(c.r,c.g,c.b,0), aa); }
|
||||
void setPixelColorXY(float x, float y, uint32_t c, bool aa = true) const;
|
||||
inline void setPixelColorXY(float x, float y, byte r, byte g, byte b, byte w = 0, bool aa = true) const { setPixelColorXY(x, y, RGBW32(r,g,b,w), aa); }
|
||||
inline void setPixelColorXY(float x, float y, CRGB c, bool aa = true) const { setPixelColorXY(x, y, RGBW32(c.r,c.g,c.b,0), aa); }
|
||||
#endif
|
||||
[[gnu::hot]] uint32_t getPixelColorXY(int x, int y) const;
|
||||
// 2D support functions
|
||||
@@ -678,7 +682,8 @@ typedef struct Segment {
|
||||
void wu_pixel(uint32_t x, uint32_t y, CRGB c);
|
||||
inline void fill_solid(CRGB c) { fill(RGBW32(c.r,c.g,c.b,0)); }
|
||||
#else
|
||||
inline uint16_t XY(int x, int y) { return x; }
|
||||
inline constexpr bool is2D() const { return false; }
|
||||
inline int XY(int x, int y) const { return x; }
|
||||
inline void setPixelColorXY(int x, int y, uint32_t c) { setPixelColor(x, c); }
|
||||
inline void setPixelColorXY(unsigned x, unsigned y, uint32_t c) { setPixelColor(int(x), c); }
|
||||
inline void setPixelColorXY(int x, int y, byte r, byte g, byte b, byte w = 0) { setPixelColor(x, RGBW32(r,g,b,w)); }
|
||||
@@ -735,7 +740,6 @@ class WS2812FX { // 96 bytes
|
||||
WS2812FX() :
|
||||
paletteFade(0),
|
||||
paletteBlend(0),
|
||||
cctBlending(0),
|
||||
now(millis()),
|
||||
timebase(0),
|
||||
isMatrix(false),
|
||||
@@ -778,7 +782,7 @@ class WS2812FX { // 96 bytes
|
||||
}
|
||||
|
||||
~WS2812FX() {
|
||||
if (customMappingTable) delete[] customMappingTable;
|
||||
if (customMappingTable) free(customMappingTable);
|
||||
_mode.clear();
|
||||
_modeData.clear();
|
||||
_segments.clear();
|
||||
@@ -804,7 +808,7 @@ class WS2812FX { // 96 bytes
|
||||
resetSegments(), // marks all segments for reset
|
||||
makeAutoSegments(bool forceReset = false), // will create segments based on configured outputs
|
||||
fixInvalidSegments(), // fixes incorrect segment configuration
|
||||
setPixelColor(unsigned n, uint32_t c), // paints absolute strip pixel with index n and color c
|
||||
setPixelColor(unsigned i, uint32_t c) const, // paints absolute strip pixel with index n and color c
|
||||
show(), // initiates LED output
|
||||
setTargetFps(unsigned fps),
|
||||
setupEffectData(); // add default effects to the list; defined in FX.cpp
|
||||
@@ -812,9 +816,9 @@ class WS2812FX { // 96 bytes
|
||||
inline void resetTimebase() { timebase = 0UL - millis(); }
|
||||
inline void restartRuntime() { for (Segment &seg : _segments) { seg.markForReset().resetIfRequired(); } }
|
||||
inline void setTransitionMode(bool t) { for (Segment &seg : _segments) seg.startTransition(t ? _transitionDur : 0); }
|
||||
inline void setPixelColor(unsigned n, uint8_t r, uint8_t g, uint8_t b, uint8_t w = 0) { setPixelColor(n, RGBW32(r,g,b,w)); }
|
||||
inline void setPixelColor(unsigned n, CRGB c) { setPixelColor(n, c.red, c.green, c.blue); }
|
||||
inline void fill(uint32_t c) { for (unsigned i = 0; i < getLengthTotal(); i++) setPixelColor(i, c); } // fill whole strip with color (inline)
|
||||
inline void setPixelColor(unsigned n, uint8_t r, uint8_t g, uint8_t b, uint8_t w = 0) const { setPixelColor(n, RGBW32(r,g,b,w)); }
|
||||
inline void setPixelColor(unsigned n, CRGB c) const { setPixelColor(n, c.red, c.green, c.blue); }
|
||||
inline void fill(uint32_t c) const { for (unsigned i = 0; i < getLengthTotal(); i++) setPixelColor(i, c); } // fill whole strip with color (inline)
|
||||
inline void trigger() { _triggered = true; } // Forces the next frame to be computed on all active segments.
|
||||
inline void setShowCallback(show_callback cb) { _callback = cb; }
|
||||
inline void setTransition(uint16_t t) { _transitionDur = t; } // sets transition time (in ms)
|
||||
@@ -824,7 +828,7 @@ class WS2812FX { // 96 bytes
|
||||
|
||||
bool
|
||||
paletteFade,
|
||||
checkSegmentAlignment(),
|
||||
checkSegmentAlignment() const,
|
||||
hasRGBWBus() const,
|
||||
hasCCTBus() const,
|
||||
deserializeMap(unsigned n = 0);
|
||||
@@ -838,7 +842,6 @@ class WS2812FX { // 96 bytes
|
||||
|
||||
uint8_t
|
||||
paletteBlend,
|
||||
cctBlending,
|
||||
getActiveSegmentsNum() const,
|
||||
getFirstSelectedSegId() const,
|
||||
getLastActiveSegmentId() const,
|
||||
@@ -869,7 +872,7 @@ class WS2812FX { // 96 bytes
|
||||
};
|
||||
|
||||
unsigned long now, timebase;
|
||||
uint32_t getPixelColor(unsigned) const;
|
||||
uint32_t getPixelColor(unsigned i) const;
|
||||
|
||||
inline uint32_t getLastShow() const { return _lastShow; } // returns millis() timestamp of last strip.show() call
|
||||
|
||||
@@ -918,11 +921,11 @@ class WS2812FX { // 96 bytes
|
||||
void setUpMatrix(); // sets up automatic matrix ledmap from panel configuration
|
||||
|
||||
// outsmart the compiler :) by correctly overloading
|
||||
inline void setPixelColorXY(int x, int y, uint32_t c) { setPixelColor((unsigned)(y * Segment::maxWidth + x), c); }
|
||||
inline void setPixelColorXY(int x, int y, byte r, byte g, byte b, byte w = 0) { setPixelColorXY(x, y, RGBW32(r,g,b,w)); }
|
||||
inline void setPixelColorXY(int x, int y, CRGB c) { setPixelColorXY(x, y, RGBW32(c.r,c.g,c.b,0)); }
|
||||
inline void setPixelColorXY(int x, int y, uint32_t c) const { setPixelColor((unsigned)(y * Segment::maxWidth + x), c); }
|
||||
inline void setPixelColorXY(int x, int y, byte r, byte g, byte b, byte w = 0) const { setPixelColorXY(x, y, RGBW32(r,g,b,w)); }
|
||||
inline void setPixelColorXY(int x, int y, CRGB c) const { setPixelColorXY(x, y, RGBW32(c.r,c.g,c.b,0)); }
|
||||
|
||||
inline uint32_t getPixelColorXY(int x, int y) const { return getPixelColor(isMatrix ? y * Segment::maxWidth + x : x); }
|
||||
inline uint32_t getPixelColorXY(int x, int y) const { return getPixelColor(isMatrix ? y * Segment::maxWidth + x : x); }
|
||||
|
||||
// end 2D support
|
||||
|
||||
@@ -936,7 +939,7 @@ class WS2812FX { // 96 bytes
|
||||
};
|
||||
|
||||
std::vector<segment> _segments;
|
||||
friend class Segment;
|
||||
friend struct Segment;
|
||||
|
||||
private:
|
||||
volatile bool _suspend;
|
||||
|
||||
@@ -50,8 +50,8 @@ void WS2812FX::setUpMatrix() {
|
||||
|
||||
customMappingSize = 0; // prevent use of mapping if anything goes wrong
|
||||
|
||||
if (customMappingTable) delete[] customMappingTable;
|
||||
customMappingTable = new uint16_t[getLengthTotal()];
|
||||
if (customMappingTable) free(customMappingTable);
|
||||
customMappingTable = static_cast<uint16_t*>(malloc(sizeof(uint16_t)*getLengthTotal()));
|
||||
|
||||
if (customMappingTable) {
|
||||
customMappingSize = getLengthTotal();
|
||||
@@ -68,7 +68,7 @@ void WS2812FX::setUpMatrix() {
|
||||
// content of the file is just raw JSON array in the form of [val1,val2,val3,...]
|
||||
// there are no other "key":"value" pairs in it
|
||||
// allowed values are: -1 (missing pixel/no LED attached), 0 (inactive/unused pixel), 1 (active/used pixel)
|
||||
char fileName[32]; strcpy_P(fileName, PSTR("/2d-gaps.json")); // reduce flash footprint
|
||||
char fileName[32]; strcpy_P(fileName, PSTR("/2d-gaps.json"));
|
||||
bool isFile = WLED_FS.exists(fileName);
|
||||
size_t gapSize = 0;
|
||||
int8_t *gapTable = nullptr;
|
||||
@@ -85,7 +85,7 @@ void WS2812FX::setUpMatrix() {
|
||||
JsonArray map = pDoc->as<JsonArray>();
|
||||
gapSize = map.size();
|
||||
if (!map.isNull() && gapSize >= matrixSize) { // not an empty map
|
||||
gapTable = new int8_t[gapSize];
|
||||
gapTable = static_cast<int8_t*>(malloc(gapSize));
|
||||
if (gapTable) for (size_t i = 0; i < gapSize; i++) {
|
||||
gapTable[i] = constrain(map[i], -1, 1);
|
||||
}
|
||||
@@ -113,7 +113,7 @@ void WS2812FX::setUpMatrix() {
|
||||
}
|
||||
|
||||
// delete gap array as we no longer need it
|
||||
if (gapTable) delete[] gapTable;
|
||||
if (gapTable) free(gapTable);
|
||||
|
||||
#ifdef WLED_DEBUG
|
||||
DEBUG_PRINT(F("Matrix ledmap:"));
|
||||
@@ -146,7 +146,7 @@ void WS2812FX::setUpMatrix() {
|
||||
#ifndef WLED_DISABLE_2D
|
||||
|
||||
// XY(x,y) - gets pixel index within current segment (often used to reference leds[] array element)
|
||||
uint16_t IRAM_ATTR_YN Segment::XY(int x, int y)
|
||||
int IRAM_ATTR_YN Segment::XY(int x, int y) const
|
||||
{
|
||||
const int vW = vWidth(); // segment width in logical pixels (can be 0 if segment is inactive)
|
||||
const int vH = vHeight(); // segment height in logical pixels (is always >= 1)
|
||||
@@ -154,7 +154,7 @@ uint16_t IRAM_ATTR_YN Segment::XY(int x, int y)
|
||||
}
|
||||
|
||||
// raw setColor function without checks (checks are done in setPixelColorXY())
|
||||
void IRAM_ATTR_YN Segment::_setPixelColorXY_raw(int& x, int& y, uint32_t& col)
|
||||
void IRAM_ATTR_YN Segment::_setPixelColorXY_raw(const int& x, const int& y, uint32_t& col) const
|
||||
{
|
||||
const int baseX = start + x;
|
||||
const int baseY = startY + y;
|
||||
@@ -179,7 +179,7 @@ void IRAM_ATTR_YN Segment::_setPixelColorXY_raw(int& x, int& y, uint32_t& col)
|
||||
}
|
||||
}
|
||||
|
||||
void IRAM_ATTR_YN Segment::setPixelColorXY(int x, int y, uint32_t col)
|
||||
void IRAM_ATTR_YN Segment::setPixelColorXY(int x, int y, uint32_t col) const
|
||||
{
|
||||
if (!isActive()) return; // not active
|
||||
|
||||
@@ -215,7 +215,7 @@ void IRAM_ATTR_YN Segment::setPixelColorXY(int x, int y, uint32_t col)
|
||||
|
||||
#ifdef WLED_USE_AA_PIXELS
|
||||
// anti-aliased version of setPixelColorXY()
|
||||
void Segment::setPixelColorXY(float x, float y, uint32_t col, bool aa)
|
||||
void Segment::setPixelColorXY(float x, float y, uint32_t col, bool aa) const
|
||||
{
|
||||
if (!isActive()) return; // not active
|
||||
if (x<0.0f || x>1.0f || y<0.0f || y>1.0f) return; // not normalized
|
||||
@@ -276,7 +276,7 @@ void Segment::blur2D(uint8_t blur_x, uint8_t blur_y, bool smear) {
|
||||
if (!isActive()) return; // not active
|
||||
const unsigned cols = vWidth();
|
||||
const unsigned rows = vHeight();
|
||||
uint32_t lastnew;
|
||||
uint32_t lastnew; // not necessary to initialize lastnew and last, as both will be initialized by the first loop iteration
|
||||
uint32_t last;
|
||||
if (blur_x) {
|
||||
const uint8_t keepx = smear ? 255 : 255 - blur_x;
|
||||
|
||||
@@ -94,7 +94,7 @@ Segment::Segment(const Segment &orig) {
|
||||
name = nullptr;
|
||||
data = nullptr;
|
||||
_dataLen = 0;
|
||||
if (orig.name) { name = new char[strlen(orig.name)+1]; if (name) strcpy(name, orig.name); }
|
||||
if (orig.name) { name = static_cast<char*>(malloc(strlen(orig.name)+1)); if (name) strcpy(name, orig.name); }
|
||||
if (orig.data) { if (allocateData(orig._dataLen)) memcpy(data, orig.data, orig._dataLen); }
|
||||
}
|
||||
|
||||
@@ -113,7 +113,7 @@ Segment& Segment::operator= (const Segment &orig) {
|
||||
//DEBUG_PRINTF_P(PSTR("-- Copying segment: %p -> %p\n"), &orig, this);
|
||||
if (this != &orig) {
|
||||
// clean destination
|
||||
if (name) { delete[] name; name = nullptr; }
|
||||
if (name) { free(name); name = nullptr; }
|
||||
stopTransition();
|
||||
deallocateData();
|
||||
// copy source
|
||||
@@ -122,7 +122,7 @@ Segment& Segment::operator= (const Segment &orig) {
|
||||
data = nullptr;
|
||||
_dataLen = 0;
|
||||
// copy source data
|
||||
if (orig.name) { name = new char[strlen(orig.name)+1]; if (name) strcpy(name, orig.name); }
|
||||
if (orig.name) { name = static_cast<char*>(malloc(strlen(orig.name)+1)); if (name) strcpy(name, orig.name); }
|
||||
if (orig.data) { if (allocateData(orig._dataLen)) memcpy(data, orig.data, orig._dataLen); }
|
||||
}
|
||||
return *this;
|
||||
@@ -132,7 +132,7 @@ Segment& Segment::operator= (const Segment &orig) {
|
||||
Segment& Segment::operator= (Segment &&orig) noexcept {
|
||||
//DEBUG_PRINTF_P(PSTR("-- Moving segment: %p -> %p\n"), &orig, this);
|
||||
if (this != &orig) {
|
||||
if (name) { delete[] name; name = nullptr; } // free old name
|
||||
if (name) { free(name); name = nullptr; } // free old name
|
||||
stopTransition();
|
||||
deallocateData(); // free old runtime data
|
||||
memcpy((void*)this, (void*)&orig, sizeof(Segment));
|
||||
@@ -253,7 +253,7 @@ void Segment::startTransition(uint16_t dur) {
|
||||
if (isInTransition()) return; // already in transition no need to store anything
|
||||
|
||||
// starting a transition has to occur before change so we get current values 1st
|
||||
_t = new Transition(dur); // no previous transition running
|
||||
_t = new(std::nothrow) Transition(dur); // no previous transition running
|
||||
if (!_t) return; // failed to allocate data
|
||||
|
||||
//DEBUG_PRINTF_P(PSTR("-- Started transition: %p (%p)\n"), this, _t);
|
||||
@@ -296,6 +296,7 @@ void Segment::stopTransition() {
|
||||
delete _t;
|
||||
_t = nullptr;
|
||||
}
|
||||
_transitionprogress = 0xFFFFU; // stop means stop - transition has ended
|
||||
}
|
||||
|
||||
// transition progression between 0-65535
|
||||
@@ -326,7 +327,7 @@ void Segment::swapSegenv(tmpsegd_t &tmpSeg) {
|
||||
tmpSeg._callT = call;
|
||||
tmpSeg._dataT = data;
|
||||
tmpSeg._dataLenT = _dataLen;
|
||||
if (_t && &tmpSeg != &(_t->_segT)) {
|
||||
if (isInTransition() && &tmpSeg != &(_t->_segT)) {
|
||||
// swap SEGENV with transitional data
|
||||
options = _t->_segT._optionsT;
|
||||
for (size_t i=0; i<NUM_COLORS; i++) colors[i] = _t->_segT._colorT[i];
|
||||
@@ -347,9 +348,9 @@ void Segment::swapSegenv(tmpsegd_t &tmpSeg) {
|
||||
}
|
||||
}
|
||||
|
||||
void Segment::restoreSegenv(tmpsegd_t &tmpSeg) {
|
||||
void Segment::restoreSegenv(const tmpsegd_t &tmpSeg) {
|
||||
//DEBUG_PRINTF_P(PSTR("-- Restoring temp seg: %p->(%p) [%d->%p]\n"), &tmpSeg, this, _dataLen, data);
|
||||
if (_t && &(_t->_segT) != &tmpSeg) {
|
||||
if (isInTransition() && &(_t->_segT) != &tmpSeg) {
|
||||
// update possibly changed variables to keep old effect running correctly
|
||||
_t->_segT._aux0T = aux0;
|
||||
_t->_segT._aux1T = aux1;
|
||||
@@ -379,8 +380,8 @@ void Segment::restoreSegenv(tmpsegd_t &tmpSeg) {
|
||||
#endif
|
||||
|
||||
uint8_t Segment::currentBri(bool useCct) const {
|
||||
unsigned prog = progress();
|
||||
if (prog < 0xFFFFU) {
|
||||
unsigned prog = isInTransition() ? progress() : 0xFFFFU;
|
||||
if (prog < 0xFFFFU) { // progress() < 0xFFFF implies that _t is a valid pointer
|
||||
unsigned curBri = (useCct ? cct : (on ? opacity : 0)) * prog;
|
||||
curBri += (useCct ? _t->_cctT : _t->_briT) * (0xFFFFU - prog);
|
||||
return curBri / 0xFFFFU;
|
||||
@@ -390,8 +391,8 @@ uint8_t Segment::currentBri(bool useCct) const {
|
||||
|
||||
uint8_t Segment::currentMode() const {
|
||||
#ifndef WLED_DISABLE_MODE_BLEND
|
||||
unsigned prog = progress();
|
||||
if (modeBlending && prog < 0xFFFFU) return _t->_modeT;
|
||||
unsigned prog = isInTransition() ? progress() : 0xFFFFU;
|
||||
if (modeBlending && prog < 0xFFFFU) return _t->_modeT; // progress() < 0xFFFF implies that _t is a valid pointer
|
||||
#endif
|
||||
return mode;
|
||||
}
|
||||
@@ -411,18 +412,18 @@ void Segment::beginDraw() {
|
||||
_vHeight = virtualHeight();
|
||||
_vLength = virtualLength();
|
||||
_segBri = currentBri();
|
||||
unsigned prog = isInTransition() ? progress() : 0xFFFFU; // transition progress; 0xFFFFU = no transition active
|
||||
// adjust gamma for effects
|
||||
for (unsigned i = 0; i < NUM_COLORS; i++) {
|
||||
#ifndef WLED_DISABLE_MODE_BLEND
|
||||
uint32_t col = isInTransition() ? color_blend16(_t->_segT._colorT[i], colors[i], progress()) : colors[i];
|
||||
uint32_t col = isInTransition() ? color_blend16(_t->_segT._colorT[i], colors[i], prog) : colors[i];
|
||||
#else
|
||||
uint32_t col = isInTransition() ? color_blend16(_t->_colorT[i], colors[i], progress()) : colors[i];
|
||||
uint32_t col = isInTransition() ? color_blend16(_t->_colorT[i], colors[i], prog) : colors[i];
|
||||
#endif
|
||||
_currentColors[i] = gamma32(col);
|
||||
}
|
||||
// load palette into _currentPalette
|
||||
loadPalette(_currentPalette, palette);
|
||||
unsigned prog = progress();
|
||||
if (strip.paletteFade && prog < 0xFFFFU) {
|
||||
// blend palettes
|
||||
// there are about 255 blend passes of 48 "blends" to completely blend two palettes (in _dur time)
|
||||
@@ -612,6 +613,19 @@ Segment &Segment::setPalette(uint8_t pal) {
|
||||
return *this;
|
||||
}
|
||||
|
||||
Segment &Segment::setName(const char *newName) {
|
||||
if (newName) {
|
||||
const int newLen = min(strlen(newName), (size_t)WLED_MAX_SEGNAME_LEN);
|
||||
if (newLen) {
|
||||
if (name) name = static_cast<char*>(realloc(name, newLen+1));
|
||||
else name = static_cast<char*>(malloc(newLen+1));
|
||||
if (name) strlcpy(name, newName, newLen);
|
||||
return *this;
|
||||
}
|
||||
}
|
||||
return clearName();
|
||||
}
|
||||
|
||||
// 2D matrix
|
||||
unsigned Segment::virtualWidth() const {
|
||||
unsigned groupLen = groupLength();
|
||||
@@ -696,7 +710,7 @@ uint16_t Segment::virtualLength() const {
|
||||
return vLength;
|
||||
}
|
||||
|
||||
void IRAM_ATTR_YN Segment::setPixelColor(int i, uint32_t col)
|
||||
void IRAM_ATTR_YN Segment::setPixelColor(int i, uint32_t col) const
|
||||
{
|
||||
if (!isActive() || i < 0) return; // not active or invalid index
|
||||
#ifndef WLED_DISABLE_2D
|
||||
@@ -869,7 +883,7 @@ void IRAM_ATTR_YN Segment::setPixelColor(int i, uint32_t col)
|
||||
|
||||
#ifdef WLED_USE_AA_PIXELS
|
||||
// anti-aliased normalized version of setPixelColor()
|
||||
void Segment::setPixelColor(float i, uint32_t col, bool aa)
|
||||
void Segment::setPixelColor(float i, uint32_t col, bool aa) const
|
||||
{
|
||||
if (!isActive()) return; // not active
|
||||
int vStrip = int(i/10.0f); // hack to allow running on virtual strips (2D segment columns/rows)
|
||||
@@ -1134,7 +1148,7 @@ void Segment::blur(uint8_t blur_amount, bool smear) {
|
||||
uint8_t seep = blur_amount >> 1;
|
||||
unsigned vlength = vLength();
|
||||
uint32_t carryover = BLACK;
|
||||
uint32_t lastnew;
|
||||
uint32_t lastnew; // not necessary to initialize lastnew and last, as both will be initialized by the first loop iteration
|
||||
uint32_t last;
|
||||
uint32_t curnew = BLACK;
|
||||
for (unsigned i = 0; i < vlength; i++) {
|
||||
@@ -1219,18 +1233,14 @@ void WS2812FX::finalizeInit() {
|
||||
|
||||
_hasWhiteChannel = _isOffRefreshRequired = false;
|
||||
|
||||
unsigned digitalCount = 0;
|
||||
#if defined(ARDUINO_ARCH_ESP32) && !defined(CONFIG_IDF_TARGET_ESP32C3)
|
||||
// determine if it is sensible to use parallel I2S outputs on ESP32 (i.e. more than 5 outputs = 1 I2S + 4 RMT)
|
||||
unsigned digitalCount = 0;
|
||||
unsigned maxLedsOnBus = 0;
|
||||
//unsigned maxChannels = 0;
|
||||
for (unsigned i = 0; i < WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES; i++) {
|
||||
if (busConfigs[i] == nullptr) break;
|
||||
if (Bus::isDigital(busConfigs[i]->type) && !Bus::is2Pin(busConfigs[i]->type)) {
|
||||
for (const auto &bus : busConfigs) {
|
||||
if (Bus::isDigital(bus.type) && !Bus::is2Pin(bus.type)) {
|
||||
digitalCount++;
|
||||
if (busConfigs[i]->count > maxLedsOnBus) maxLedsOnBus = busConfigs[i]->count;
|
||||
//unsigned channels = Bus::getNumberOfChannels(busConfigs[i]->type);
|
||||
//if (channels > maxChannels) maxChannels = channels;
|
||||
if (bus.count > maxLedsOnBus) maxLedsOnBus = bus.count;
|
||||
}
|
||||
}
|
||||
DEBUG_PRINTF_P(PSTR("Maximum LEDs on a bus: %u\nDigital buses: %u\n"), maxLedsOnBus, digitalCount);
|
||||
@@ -1241,28 +1251,14 @@ void WS2812FX::finalizeInit() {
|
||||
|
||||
// create buses/outputs
|
||||
unsigned mem = 0;
|
||||
for (unsigned i = 0; i < WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES; i++) {
|
||||
if (busConfigs[i] == nullptr) break;
|
||||
#if defined(ARDUINO_ARCH_ESP32) && !defined(CONFIG_IDF_TARGET_ESP32C3)
|
||||
#if defined(CONFIG_IDF_TARGET_ESP32S3) || defined(CONFIG_IDF_TARGET_ESP32S2)
|
||||
// TODO: once I2S memory is larger than RMT it will ignore RMT
|
||||
if (BusManager::hasParallelOutput() && i > 3) { // will use RMT and then x8 I2S
|
||||
unsigned memT = BusManager::memUsage(*busConfigs[i]); // includes x8 memory allocation for parallel I2S
|
||||
if (memT > mem) mem = memT; // if we have unequal LED count use the largest
|
||||
} else
|
||||
#else // classic ESP32
|
||||
if (BusManager::hasParallelOutput() && i < 8) { // 1-8 are RMT if using x1 I2S
|
||||
unsigned memT = BusManager::memUsage(*busConfigs[i]); // includes x8 memory allocation for parallel I2S
|
||||
if (memT > mem) mem = memT; // if we have unequal LED count use the largest
|
||||
} else
|
||||
#endif
|
||||
#endif
|
||||
mem += BusManager::memUsage(*busConfigs[i]); // includes global buffer
|
||||
if (mem <= MAX_LED_MEMORY) BusManager::add(*busConfigs[i]);
|
||||
else DEBUG_PRINTF_P(PSTR("Out of LED memory! Bus #%u not created."), i);
|
||||
delete busConfigs[i];
|
||||
busConfigs[i] = nullptr;
|
||||
digitalCount = 0;
|
||||
for (const auto &bus : busConfigs) {
|
||||
mem += bus.memUsage(Bus::isDigital(bus.type) && !Bus::is2Pin(bus.type) ? digitalCount++ : 0); // includes global buffer
|
||||
if (mem <= MAX_LED_MEMORY) BusManager::add(bus);
|
||||
else DEBUG_PRINTF_P(PSTR("Out of LED memory! Bus %d (%d) #%u not created."), (int)bus.type, (int)bus.count, digitalCount);
|
||||
}
|
||||
busConfigs.clear();
|
||||
busConfigs.shrink_to_fit();
|
||||
|
||||
//if busses failed to load, add default (fresh install, FS issue, ...)
|
||||
if (BusManager::getNumBusses() == 0) {
|
||||
@@ -1279,6 +1275,7 @@ void WS2812FX::finalizeInit() {
|
||||
|
||||
unsigned prevLen = 0;
|
||||
unsigned pinsIndex = 0;
|
||||
digitalCount = 0;
|
||||
for (unsigned i = 0; i < WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES; i++) {
|
||||
uint8_t defPin[OUTPUT_MAX_PINS];
|
||||
// if we have less types than requested outputs and they do not align, use last known type to set current type
|
||||
@@ -1343,11 +1340,11 @@ void WS2812FX::finalizeInit() {
|
||||
if (Bus::isPWM(dataType) || Bus::isOnOff(dataType)) count = 1;
|
||||
prevLen += count;
|
||||
BusConfig defCfg = BusConfig(dataType, defPin, start, count, DEFAULT_LED_COLOR_ORDER, false, 0, RGBW_MODE_MANUAL_ONLY, 0, useGlobalLedBuffer);
|
||||
mem += BusManager::memUsage(defCfg);
|
||||
mem += defCfg.memUsage(Bus::isDigital(dataType) && !Bus::is2Pin(dataType) ? digitalCount++ : 0);
|
||||
if (BusManager::add(defCfg) == -1) break;
|
||||
}
|
||||
}
|
||||
DEBUG_PRINTF_P(PSTR("LED buffer size: %uB/%uB\n"), mem, BusManager::getTotalBuffers());
|
||||
DEBUG_PRINTF_P(PSTR("LED buffer size: %uB/%uB\n"), mem, BusManager::memUsage());
|
||||
|
||||
_length = 0;
|
||||
for (int i=0; i<BusManager::getNumBusses(); i++) {
|
||||
@@ -1461,7 +1458,7 @@ void WS2812FX::service() {
|
||||
#endif
|
||||
}
|
||||
|
||||
void IRAM_ATTR WS2812FX::setPixelColor(unsigned i, uint32_t col) {
|
||||
void IRAM_ATTR WS2812FX::setPixelColor(unsigned i, uint32_t col) const {
|
||||
i = getMappedPixelIndex(i);
|
||||
if (i >= _length) return;
|
||||
BusManager::setPixelColor(i, col);
|
||||
@@ -1742,9 +1739,9 @@ void WS2812FX::fixInvalidSegments() {
|
||||
|
||||
//true if all segments align with a bus, or if a segment covers the total length
|
||||
//irrelevant in 2D set-up
|
||||
bool WS2812FX::checkSegmentAlignment() {
|
||||
bool WS2812FX::checkSegmentAlignment() const {
|
||||
bool aligned = false;
|
||||
for (segment &seg : _segments) {
|
||||
for (const segment &seg : _segments) {
|
||||
for (unsigned b = 0; b<BusManager::getNumBusses(); b++) {
|
||||
Bus *bus = BusManager::getBus(b);
|
||||
if (seg.start == bus->getStart() && seg.stop == bus->getStart() + bus->getLength()) aligned = true;
|
||||
@@ -1856,8 +1853,8 @@ bool WS2812FX::deserializeMap(unsigned n) {
|
||||
Segment::maxHeight = min(max(root[F("height")].as<int>(), 1), 128);
|
||||
}
|
||||
|
||||
if (customMappingTable) delete[] customMappingTable;
|
||||
customMappingTable = new uint16_t[getLengthTotal()];
|
||||
if (customMappingTable) free(customMappingTable);
|
||||
customMappingTable = static_cast<uint16_t*>(malloc(sizeof(uint16_t)*getLengthTotal()));
|
||||
|
||||
if (customMappingTable) {
|
||||
DEBUG_PRINT(F("Reading LED map from ")); DEBUG_PRINTLN(fileName);
|
||||
|
||||
@@ -28,30 +28,8 @@ extern bool useParallelI2S;
|
||||
uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
|
||||
|
||||
//udp.cpp
|
||||
uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, byte *buffer, uint8_t bri=255, bool isRGBW=false);
|
||||
uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, const uint8_t* buffer, uint8_t bri=255, bool isRGBW=false);
|
||||
|
||||
// enable additional debug output
|
||||
#if defined(WLED_DEBUG_HOST)
|
||||
#include "net_debug.h"
|
||||
#define DEBUGOUT NetDebug
|
||||
#else
|
||||
#define DEBUGOUT Serial
|
||||
#endif
|
||||
|
||||
#ifdef WLED_DEBUG
|
||||
#ifndef ESP8266
|
||||
#include <rom/rtc.h>
|
||||
#endif
|
||||
#define DEBUG_PRINT(x) DEBUGOUT.print(x)
|
||||
#define DEBUG_PRINTLN(x) DEBUGOUT.println(x)
|
||||
#define DEBUG_PRINTF(x...) DEBUGOUT.printf(x)
|
||||
#define DEBUG_PRINTF_P(x...) DEBUGOUT.printf_P(x)
|
||||
#else
|
||||
#define DEBUG_PRINT(x)
|
||||
#define DEBUG_PRINTLN(x)
|
||||
#define DEBUG_PRINTF(x...)
|
||||
#define DEBUG_PRINTF_P(x...)
|
||||
#endif
|
||||
|
||||
//color mangling macros
|
||||
#define RGBW32(r,g,b,w) (uint32_t((byte(w) << 24) | (byte(r) << 16) | (byte(g) << 8) | (byte(b))))
|
||||
@@ -64,6 +42,7 @@ uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, byte
|
||||
bool ColorOrderMap::add(uint16_t start, uint16_t len, uint8_t colorOrder) {
|
||||
if (count() >= WLED_MAX_COLOR_ORDER_MAPPINGS || len == 0 || (colorOrder & 0x0F) > COL_ORDER_MAX) return false; // upper nibble contains W swap information
|
||||
_mappings.push_back({start,len,colorOrder});
|
||||
DEBUGBUS_PRINTF_P(PSTR("Bus: Add COM (%d,%d,%d)\n"), (int)start, (int)len, (int)colorOrder);
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -117,10 +96,14 @@ uint32_t Bus::autoWhiteCalc(uint32_t c) const {
|
||||
}
|
||||
|
||||
uint8_t *Bus::allocateData(size_t size) {
|
||||
if (_data) free(_data); // should not happen, but for safety
|
||||
freeData(); // should not happen, but for safety
|
||||
return _data = (uint8_t *)(size>0 ? calloc(size, sizeof(uint8_t)) : nullptr);
|
||||
}
|
||||
|
||||
void Bus::freeData() {
|
||||
if (_data) free(_data);
|
||||
_data = nullptr;
|
||||
}
|
||||
|
||||
BusDigital::BusDigital(const BusConfig &bc, uint8_t nr, const ColorOrderMap &com)
|
||||
: Bus(bc.type, bc.start, bc.autoWhite, bc.count, bc.reversed, (bc.refreshReq || bc.type == TYPE_TM1814))
|
||||
@@ -130,32 +113,32 @@ BusDigital::BusDigital(const BusConfig &bc, uint8_t nr, const ColorOrderMap &com
|
||||
, _milliAmpsMax(bc.milliAmpsMax)
|
||||
, _colorOrderMap(com)
|
||||
{
|
||||
DEBUG_PRINTLN(F("Bus: Creating digital bus."));
|
||||
if (!isDigital(bc.type) || !bc.count) { DEBUG_PRINTLN(F("Not digial or empty bus!")); return; }
|
||||
if (!PinManager::allocatePin(bc.pins[0], true, PinOwner::BusDigital)) { DEBUG_PRINTLN(F("Pin 0 allocated!")); return; }
|
||||
DEBUGBUS_PRINTLN(F("Bus: Creating digital bus."));
|
||||
if (!isDigital(bc.type) || !bc.count) { DEBUGBUS_PRINTLN(F("Not digial or empty bus!")); return; }
|
||||
if (!PinManager::allocatePin(bc.pins[0], true, PinOwner::BusDigital)) { DEBUGBUS_PRINTLN(F("Pin 0 allocated!")); return; }
|
||||
_frequencykHz = 0U;
|
||||
_pins[0] = bc.pins[0];
|
||||
if (is2Pin(bc.type)) {
|
||||
if (!PinManager::allocatePin(bc.pins[1], true, PinOwner::BusDigital)) {
|
||||
cleanup();
|
||||
DEBUG_PRINTLN(F("Pin 1 allocated!"));
|
||||
DEBUGBUS_PRINTLN(F("Pin 1 allocated!"));
|
||||
return;
|
||||
}
|
||||
_pins[1] = bc.pins[1];
|
||||
_frequencykHz = bc.frequency ? bc.frequency : 2000U; // 2MHz clock if undefined
|
||||
}
|
||||
_iType = PolyBus::getI(bc.type, _pins, nr);
|
||||
if (_iType == I_NONE) { DEBUG_PRINTLN(F("Incorrect iType!")); return; }
|
||||
if (_iType == I_NONE) { DEBUGBUS_PRINTLN(F("Incorrect iType!")); return; }
|
||||
_hasRgb = hasRGB(bc.type);
|
||||
_hasWhite = hasWhite(bc.type);
|
||||
_hasCCT = hasCCT(bc.type);
|
||||
if (bc.doubleBuffer && !allocateData(bc.count * Bus::getNumberOfChannels(bc.type))) { DEBUG_PRINTLN(F("Buffer allocation failed!")); return; }
|
||||
if (bc.doubleBuffer && !allocateData(bc.count * Bus::getNumberOfChannels(bc.type))) { DEBUGBUS_PRINTLN(F("Buffer allocation failed!")); return; }
|
||||
//_buffering = bc.doubleBuffer;
|
||||
uint16_t lenToCreate = bc.count;
|
||||
if (bc.type == TYPE_WS2812_1CH_X3) lenToCreate = NUM_ICS_WS2812_1CH_3X(bc.count); // only needs a third of "RGB" LEDs for NeoPixelBus
|
||||
_busPtr = PolyBus::create(_iType, _pins, lenToCreate + _skip, nr);
|
||||
_valid = (_busPtr != nullptr);
|
||||
DEBUG_PRINTF_P(PSTR("Bus: %successfully inited #%u (len:%u, type:%u (RGB:%d, W:%d, CCT:%d), pins:%u,%u [itype:%u] mA=%d/%d)\n"),
|
||||
DEBUGBUS_PRINTF_P(PSTR("Bus: %successfully inited #%u (len:%u, type:%u (RGB:%d, W:%d, CCT:%d), pins:%u,%u [itype:%u] mA=%d/%d)\n"),
|
||||
_valid?"S":"Uns",
|
||||
(int)nr,
|
||||
(int)bc.count,
|
||||
@@ -175,7 +158,7 @@ BusDigital::BusDigital(const BusConfig &bc, uint8_t nr, const ColorOrderMap &com
|
||||
//I am NOT to be held liable for burned down garages or houses!
|
||||
|
||||
// To disable brightness limiter we either set output max current to 0 or single LED current to 0
|
||||
uint8_t BusDigital::estimateCurrentAndLimitBri() {
|
||||
uint8_t BusDigital::estimateCurrentAndLimitBri() const {
|
||||
bool useWackyWS2815PowerModel = false;
|
||||
byte actualMilliampsPerLed = _milliAmpsPerLed;
|
||||
|
||||
@@ -213,21 +196,21 @@ uint8_t BusDigital::estimateCurrentAndLimitBri() {
|
||||
}
|
||||
|
||||
// powerSum has all the values of channels summed (max would be getLength()*765 as white is excluded) so convert to milliAmps
|
||||
_milliAmpsTotal = (busPowerSum * actualMilliampsPerLed * _bri) / (765*255);
|
||||
BusDigital::_milliAmpsTotal = (busPowerSum * actualMilliampsPerLed * _bri) / (765*255);
|
||||
|
||||
uint8_t newBri = _bri;
|
||||
if (_milliAmpsTotal > powerBudget) {
|
||||
if (BusDigital::_milliAmpsTotal > powerBudget) {
|
||||
//scale brightness down to stay in current limit
|
||||
unsigned scaleB = powerBudget * 255 / _milliAmpsTotal;
|
||||
unsigned scaleB = powerBudget * 255 / BusDigital::_milliAmpsTotal;
|
||||
newBri = (_bri * scaleB) / 256 + 1;
|
||||
_milliAmpsTotal = powerBudget;
|
||||
BusDigital::_milliAmpsTotal = powerBudget;
|
||||
//_milliAmpsTotal = (busPowerSum * actualMilliampsPerLed * newBri) / (765*255);
|
||||
}
|
||||
return newBri;
|
||||
}
|
||||
|
||||
void BusDigital::show() {
|
||||
_milliAmpsTotal = 0;
|
||||
BusDigital::_milliAmpsTotal = 0;
|
||||
if (!_valid) return;
|
||||
|
||||
uint8_t cctWW = 0, cctCW = 0;
|
||||
@@ -390,8 +373,8 @@ unsigned BusDigital::getPins(uint8_t* pinArray) const {
|
||||
return numPins;
|
||||
}
|
||||
|
||||
unsigned BusDigital::getBufferSize() const {
|
||||
return isOk() ? PolyBus::getDataSize(_busPtr, _iType) : 0;
|
||||
unsigned BusDigital::getBusSize() const {
|
||||
return sizeof(BusDigital) + (isOk() ? PolyBus::getDataSize(_busPtr, _iType) + (_data ? _len * getNumberOfChannels() : 0) : 0);
|
||||
}
|
||||
|
||||
void BusDigital::setColorOrder(uint8_t colorOrder) {
|
||||
@@ -432,12 +415,12 @@ void BusDigital::begin() {
|
||||
}
|
||||
|
||||
void BusDigital::cleanup() {
|
||||
DEBUG_PRINTLN(F("Digital Cleanup."));
|
||||
DEBUGBUS_PRINTLN(F("Digital Cleanup."));
|
||||
PolyBus::cleanup(_busPtr, _iType);
|
||||
_iType = I_NONE;
|
||||
_valid = false;
|
||||
_busPtr = nullptr;
|
||||
if (_data != nullptr) freeData();
|
||||
freeData();
|
||||
//PinManager::deallocateMultiplePins(_pins, 2, PinOwner::BusDigital);
|
||||
PinManager::deallocatePin(_pins[1], PinOwner::BusDigital);
|
||||
PinManager::deallocatePin(_pins[0], PinOwner::BusDigital);
|
||||
@@ -513,9 +496,9 @@ BusPwm::BusPwm(const BusConfig &bc)
|
||||
_hasRgb = hasRGB(bc.type);
|
||||
_hasWhite = hasWhite(bc.type);
|
||||
_hasCCT = hasCCT(bc.type);
|
||||
_data = _pwmdata; // avoid malloc() and use stack
|
||||
_data = _pwmdata; // avoid malloc() and use already allocated memory
|
||||
_valid = true;
|
||||
DEBUG_PRINTF_P(PSTR("%successfully inited PWM strip with type %u, frequency %u, bit depth %u and pins %u,%u,%u,%u,%u\n"), _valid?"S":"Uns", bc.type, _frequency, _depth, _pins[0], _pins[1], _pins[2], _pins[3], _pins[4]);
|
||||
DEBUGBUS_PRINTF_P(PSTR("%successfully inited PWM strip with type %u, frequency %u, bit depth %u and pins %u,%u,%u,%u,%u\n"), _valid?"S":"Uns", bc.type, _frequency, _depth, _pins[0], _pins[1], _pins[2], _pins[3], _pins[4]);
|
||||
}
|
||||
|
||||
void BusPwm::setPixelColor(unsigned pix, uint32_t c) {
|
||||
@@ -684,7 +667,7 @@ BusOnOff::BusOnOff(const BusConfig &bc)
|
||||
_hasCCT = false;
|
||||
_data = &_onoffdata; // avoid malloc() and use stack
|
||||
_valid = true;
|
||||
DEBUG_PRINTF_P(PSTR("%successfully inited On/Off strip with pin %u\n"), _valid?"S":"Uns", _pin);
|
||||
DEBUGBUS_PRINTF_P(PSTR("%successfully inited On/Off strip with pin %u\n"), _valid?"S":"Uns", _pin);
|
||||
}
|
||||
|
||||
void BusOnOff::setPixelColor(unsigned pix, uint32_t c) {
|
||||
@@ -744,7 +727,7 @@ BusNetwork::BusNetwork(const BusConfig &bc)
|
||||
_UDPchannels = _hasWhite + 3;
|
||||
_client = IPAddress(bc.pins[0],bc.pins[1],bc.pins[2],bc.pins[3]);
|
||||
_valid = (allocateData(_len * _UDPchannels) != nullptr);
|
||||
DEBUG_PRINTF_P(PSTR("%successfully inited virtual strip with type %u and IP %u.%u.%u.%u\n"), _valid?"S":"Uns", bc.type, bc.pins[0], bc.pins[1], bc.pins[2], bc.pins[3]);
|
||||
DEBUGBUS_PRINTF_P(PSTR("%successfully inited virtual strip with type %u and IP %u.%u.%u.%u\n"), _valid?"S":"Uns", bc.type, bc.pins[0], bc.pins[1], bc.pins[2], bc.pins[3]);
|
||||
}
|
||||
|
||||
void BusNetwork::setPixelColor(unsigned pix, uint32_t c) {
|
||||
@@ -792,7 +775,7 @@ std::vector<LEDType> BusNetwork::getLEDTypes() {
|
||||
}
|
||||
|
||||
void BusNetwork::cleanup() {
|
||||
DEBUG_PRINTLN(F("Virtual Cleanup."));
|
||||
DEBUGBUS_PRINTLN(F("Virtual Cleanup."));
|
||||
_type = I_NONE;
|
||||
_valid = false;
|
||||
freeData();
|
||||
@@ -800,48 +783,60 @@ void BusNetwork::cleanup() {
|
||||
|
||||
|
||||
//utility to get the approx. memory usage of a given BusConfig
|
||||
uint32_t BusManager::memUsage(const BusConfig &bc) {
|
||||
if (Bus::isOnOff(bc.type) || Bus::isPWM(bc.type)) return OUTPUT_MAX_PINS;
|
||||
|
||||
unsigned len = bc.count + bc.skipAmount;
|
||||
unsigned channels = Bus::getNumberOfChannels(bc.type);
|
||||
unsigned multiplier = 1;
|
||||
if (Bus::isDigital(bc.type)) { // digital types
|
||||
if (Bus::is16bit(bc.type)) len *= 2; // 16-bit LEDs
|
||||
#ifdef ESP8266
|
||||
if (bc.pins[0] == 3) { //8266 DMA uses 5x the mem
|
||||
multiplier = 5;
|
||||
}
|
||||
#else //ESP32 RMT uses double buffer, parallel I2S uses 8x buffer (3 times)
|
||||
#ifndef CONFIG_IDF_TARGET_ESP32C3
|
||||
multiplier = useParallelI2S ? 24 : 2;
|
||||
#else
|
||||
multiplier = 2;
|
||||
#endif
|
||||
#endif
|
||||
unsigned BusConfig::memUsage(unsigned nr) const {
|
||||
if (Bus::isVirtual(type)) {
|
||||
return sizeof(BusNetwork) + (count * Bus::getNumberOfChannels(type));
|
||||
} else if (Bus::isDigital(type)) {
|
||||
return sizeof(BusDigital) + PolyBus::memUsage(count + skipAmount, PolyBus::getI(type, pins, nr)) + doubleBuffer * (count + skipAmount) * Bus::getNumberOfChannels(type);
|
||||
} else if (Bus::isOnOff(type)) {
|
||||
return sizeof(BusOnOff);
|
||||
} else {
|
||||
return sizeof(BusPwm);
|
||||
}
|
||||
return (len * multiplier + bc.doubleBuffer * (bc.count + bc.skipAmount)) * channels;
|
||||
}
|
||||
|
||||
unsigned BusManager::getTotalBuffers() {
|
||||
|
||||
unsigned BusManager::memUsage() {
|
||||
// when ESP32, S2 & S3 use parallel I2S only the largest bus determines the total memory requirements for back buffers
|
||||
// front buffers are always allocated per bus
|
||||
unsigned size = 0;
|
||||
for (unsigned i=0; i<numBusses; i++) size += busses[i]->getBufferSize();
|
||||
return size;
|
||||
unsigned maxI2S = 0;
|
||||
#if !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(ESP8266)
|
||||
unsigned digitalCount = 0;
|
||||
#if defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3)
|
||||
#define MAX_RMT 4
|
||||
#else
|
||||
#define MAX_RMT 8
|
||||
#endif
|
||||
#endif
|
||||
for (const auto &bus : busses) {
|
||||
unsigned busSize = bus->getBusSize();
|
||||
#if !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(ESP8266)
|
||||
if (bus->isDigital() && !bus->is2Pin()) digitalCount++;
|
||||
if (PolyBus::isParallelI2S1Output() && digitalCount > MAX_RMT) {
|
||||
unsigned i2sCommonSize = 3 * bus->getLength() * bus->getNumberOfChannels() * (bus->is16bit()+1);
|
||||
if (i2sCommonSize > maxI2S) maxI2S = i2sCommonSize;
|
||||
busSize -= i2sCommonSize;
|
||||
}
|
||||
#endif
|
||||
size += busSize;
|
||||
}
|
||||
return size + maxI2S;
|
||||
}
|
||||
|
||||
int BusManager::add(const BusConfig &bc) {
|
||||
DEBUG_PRINTF_P(PSTR("Bus: Adding bus #%d (%d - %d >= %d)\n"), numBusses, getNumBusses(), getNumVirtualBusses(), WLED_MAX_BUSSES);
|
||||
DEBUGBUS_PRINTF_P(PSTR("Bus: Adding bus #%d (%d - %d >= %d)\n"), busses.size(), getNumBusses(), getNumVirtualBusses(), WLED_MAX_BUSSES);
|
||||
if (getNumBusses() - getNumVirtualBusses() >= WLED_MAX_BUSSES) return -1;
|
||||
if (Bus::isVirtual(bc.type)) {
|
||||
busses[numBusses] = new BusNetwork(bc);
|
||||
busses.push_back(new BusNetwork(bc));
|
||||
} else if (Bus::isDigital(bc.type)) {
|
||||
busses[numBusses] = new BusDigital(bc, numBusses, colorOrderMap);
|
||||
busses.push_back(new BusDigital(bc, busses.size(), colorOrderMap));
|
||||
} else if (Bus::isOnOff(bc.type)) {
|
||||
busses[numBusses] = new BusOnOff(bc);
|
||||
busses.push_back(new BusOnOff(bc));
|
||||
} else {
|
||||
busses[numBusses] = new BusPwm(bc);
|
||||
busses.push_back(new BusPwm(bc));
|
||||
}
|
||||
return numBusses++;
|
||||
return busses.size();
|
||||
}
|
||||
|
||||
// credit @willmmiles
|
||||
@@ -870,7 +865,7 @@ String BusManager::getLEDTypesJSONString() {
|
||||
}
|
||||
|
||||
void BusManager::useParallelOutput() {
|
||||
DEBUG_PRINTLN(F("Bus: Enabling parallel I2S."));
|
||||
DEBUGBUS_PRINTLN(F("Bus: Enabling parallel I2S."));
|
||||
PolyBus::setParallelI2S1Output();
|
||||
}
|
||||
|
||||
@@ -880,11 +875,11 @@ bool BusManager::hasParallelOutput() {
|
||||
|
||||
//do not call this method from system context (network callback)
|
||||
void BusManager::removeAll() {
|
||||
DEBUG_PRINTLN(F("Removing all."));
|
||||
DEBUGBUS_PRINTLN(F("Removing all."));
|
||||
//prevents crashes due to deleting busses while in use.
|
||||
while (!canAllShow()) yield();
|
||||
for (unsigned i = 0; i < numBusses; i++) delete busses[i];
|
||||
numBusses = 0;
|
||||
for (auto &bus : busses) delete bus;
|
||||
busses.clear();
|
||||
PolyBus::setParallelI2S1Output(false);
|
||||
}
|
||||
|
||||
@@ -895,7 +890,7 @@ void BusManager::removeAll() {
|
||||
void BusManager::esp32RMTInvertIdle() {
|
||||
bool idle_out;
|
||||
unsigned rmt = 0;
|
||||
for (unsigned u = 0; u < numBusses(); u++) {
|
||||
for (unsigned u = 0; u < busses.size(); u++) {
|
||||
#if defined(CONFIG_IDF_TARGET_ESP32C3) // 2 RMT, only has 1 I2S but NPB does not support it ATM
|
||||
if (u > 1) return;
|
||||
rmt = u;
|
||||
@@ -928,12 +923,12 @@ void BusManager::on() {
|
||||
#ifdef ESP8266
|
||||
//Fix for turning off onboard LED breaking bus
|
||||
if (PinManager::getPinOwner(LED_BUILTIN) == PinOwner::BusDigital) {
|
||||
for (unsigned i = 0; i < numBusses; i++) {
|
||||
for (auto &bus : busses) {
|
||||
uint8_t pins[2] = {255,255};
|
||||
if (busses[i]->isDigital() && busses[i]->getPins(pins)) {
|
||||
if (bus->isDigital() && bus->getPins(pins)) {
|
||||
if (pins[0] == LED_BUILTIN || pins[1] == LED_BUILTIN) {
|
||||
BusDigital *bus = static_cast<BusDigital*>(busses[i]);
|
||||
bus->begin();
|
||||
BusDigital *b = static_cast<BusDigital*>(bus);
|
||||
b->begin();
|
||||
break;
|
||||
}
|
||||
}
|
||||
@@ -950,7 +945,7 @@ void BusManager::off() {
|
||||
// turn off built-in LED if strip is turned off
|
||||
// this will break digital bus so will need to be re-initialised on On
|
||||
if (PinManager::getPinOwner(LED_BUILTIN) == PinOwner::BusDigital) {
|
||||
for (unsigned i = 0; i < numBusses; i++) if (busses[i]->isOffRefreshRequired()) return;
|
||||
for (const auto &bus : busses) if (bus->isOffRefreshRequired()) return;
|
||||
pinMode(LED_BUILTIN, OUTPUT);
|
||||
digitalWrite(LED_BUILTIN, HIGH);
|
||||
}
|
||||
@@ -962,30 +957,26 @@ void BusManager::off() {
|
||||
|
||||
void BusManager::show() {
|
||||
_milliAmpsUsed = 0;
|
||||
for (unsigned i = 0; i < numBusses; i++) {
|
||||
busses[i]->show();
|
||||
_milliAmpsUsed += busses[i]->getUsedCurrent();
|
||||
for (auto &bus : busses) {
|
||||
bus->show();
|
||||
_milliAmpsUsed += bus->getUsedCurrent();
|
||||
}
|
||||
}
|
||||
|
||||
void BusManager::setStatusPixel(uint32_t c) {
|
||||
for (unsigned i = 0; i < numBusses; i++) {
|
||||
busses[i]->setStatusPixel(c);
|
||||
}
|
||||
for (auto &bus : busses) bus->setStatusPixel(c);
|
||||
}
|
||||
|
||||
void IRAM_ATTR BusManager::setPixelColor(unsigned pix, uint32_t c) {
|
||||
for (unsigned i = 0; i < numBusses; i++) {
|
||||
unsigned bstart = busses[i]->getStart();
|
||||
if (pix < bstart || pix >= bstart + busses[i]->getLength()) continue;
|
||||
busses[i]->setPixelColor(pix - bstart, c);
|
||||
for (auto &bus : busses) {
|
||||
unsigned bstart = bus->getStart();
|
||||
if (pix < bstart || pix >= bstart + bus->getLength()) continue;
|
||||
bus->setPixelColor(pix - bstart, c);
|
||||
}
|
||||
}
|
||||
|
||||
void BusManager::setBrightness(uint8_t b) {
|
||||
for (unsigned i = 0; i < numBusses; i++) {
|
||||
busses[i]->setBrightness(b);
|
||||
}
|
||||
for (auto &bus : busses) bus->setBrightness(b);
|
||||
}
|
||||
|
||||
void BusManager::setSegmentCCT(int16_t cct, bool allowWBCorrection) {
|
||||
@@ -998,30 +989,28 @@ void BusManager::setSegmentCCT(int16_t cct, bool allowWBCorrection) {
|
||||
}
|
||||
|
||||
uint32_t BusManager::getPixelColor(unsigned pix) {
|
||||
for (unsigned i = 0; i < numBusses; i++) {
|
||||
unsigned bstart = busses[i]->getStart();
|
||||
if (!busses[i]->containsPixel(pix)) continue;
|
||||
return busses[i]->getPixelColor(pix - bstart);
|
||||
for (auto &bus : busses) {
|
||||
unsigned bstart = bus->getStart();
|
||||
if (!bus->containsPixel(pix)) continue;
|
||||
return bus->getPixelColor(pix - bstart);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool BusManager::canAllShow() {
|
||||
for (unsigned i = 0; i < numBusses; i++) {
|
||||
if (!busses[i]->canShow()) return false;
|
||||
}
|
||||
for (const auto &bus : busses) if (!bus->canShow()) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
Bus* BusManager::getBus(uint8_t busNr) {
|
||||
if (busNr >= numBusses) return nullptr;
|
||||
if (busNr >= busses.size()) return nullptr;
|
||||
return busses[busNr];
|
||||
}
|
||||
|
||||
//semi-duplicate of strip.getLengthTotal() (though that just returns strip._length, calculated in finalizeInit())
|
||||
uint16_t BusManager::getTotalLength() {
|
||||
unsigned len = 0;
|
||||
for (unsigned i=0; i<numBusses; i++) len += busses[i]->getLength();
|
||||
for (const auto &bus : busses) len += bus->getLength();
|
||||
return len;
|
||||
}
|
||||
|
||||
@@ -1034,8 +1023,7 @@ uint8_t Bus::_gAWM = 255;
|
||||
|
||||
uint16_t BusDigital::_milliAmpsTotal = 0;
|
||||
|
||||
uint8_t BusManager::numBusses = 0;
|
||||
Bus* BusManager::busses[WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES];
|
||||
std::vector<Bus*> BusManager::busses;
|
||||
ColorOrderMap BusManager::colorOrderMap = {};
|
||||
uint16_t BusManager::_milliAmpsUsed = 0;
|
||||
uint16_t BusManager::_milliAmpsMax = ABL_MILLIAMPS_DEFAULT;
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
#pragma once
|
||||
#ifndef BusManager_h
|
||||
#define BusManager_h
|
||||
|
||||
@@ -9,6 +10,29 @@
|
||||
#include "pin_manager.h"
|
||||
#include <vector>
|
||||
|
||||
// enable additional debug output
|
||||
#if defined(WLED_DEBUG_HOST)
|
||||
#include "net_debug.h"
|
||||
#define DEBUGOUT NetDebug
|
||||
#else
|
||||
#define DEBUGOUT Serial
|
||||
#endif
|
||||
|
||||
#ifdef WLED_DEBUG_BUS
|
||||
#ifndef ESP8266
|
||||
#include <rom/rtc.h>
|
||||
#endif
|
||||
#define DEBUGBUS_PRINT(x) DEBUGOUT.print(x)
|
||||
#define DEBUGBUS_PRINTLN(x) DEBUGOUT.println(x)
|
||||
#define DEBUGBUS_PRINTF(x...) DEBUGOUT.printf(x)
|
||||
#define DEBUGBUS_PRINTF_P(x...) DEBUGOUT.printf_P(x)
|
||||
#else
|
||||
#define DEBUGBUS_PRINT(x)
|
||||
#define DEBUGBUS_PRINTLN(x)
|
||||
#define DEBUGBUS_PRINTF(x...)
|
||||
#define DEBUGBUS_PRINTF_P(x...)
|
||||
#endif
|
||||
|
||||
//colors.cpp
|
||||
uint16_t approximateKelvinFromRGB(uint32_t rgb);
|
||||
|
||||
@@ -78,9 +102,9 @@ class Bus {
|
||||
_autoWhiteMode = Bus::hasWhite(type) ? aw : RGBW_MODE_MANUAL_ONLY;
|
||||
};
|
||||
|
||||
virtual ~Bus() {} //throw the bus under the bus
|
||||
virtual ~Bus() {} //throw the bus under the bus (derived class needs to freeData())
|
||||
|
||||
virtual void begin() {};
|
||||
virtual void begin() {};
|
||||
virtual void show() = 0;
|
||||
virtual bool canShow() const { return true; }
|
||||
virtual void setStatusPixel(uint32_t c) {}
|
||||
@@ -96,7 +120,7 @@ class Bus {
|
||||
virtual uint16_t getLEDCurrent() const { return 0; }
|
||||
virtual uint16_t getUsedCurrent() const { return 0; }
|
||||
virtual uint16_t getMaxCurrent() const { return 0; }
|
||||
virtual unsigned getBufferSize() const { return 1; }
|
||||
virtual unsigned getBusSize() const { return sizeof(Bus); }
|
||||
|
||||
inline bool hasRGB() const { return _hasRgb; }
|
||||
inline bool hasWhite() const { return _hasWhite; }
|
||||
@@ -121,8 +145,8 @@ class Bus {
|
||||
inline bool containsPixel(uint16_t pix) const { return pix >= _start && pix < _start + _len; }
|
||||
|
||||
static inline std::vector<LEDType> getLEDTypes() { return {{TYPE_NONE, "", PSTR("None")}}; } // not used. just for reference for derived classes
|
||||
static constexpr uint8_t getNumberOfPins(uint8_t type) { return isVirtual(type) ? 4 : isPWM(type) ? numPWMPins(type) : is2Pin(type) + 1; } // credit @PaoloTK
|
||||
static constexpr uint8_t getNumberOfChannels(uint8_t type) { return (type == TYPE_WS2812_WWA) ? 3 : hasWhite(type) + 3*hasRGB(type) + hasCCT(type); }
|
||||
static constexpr unsigned getNumberOfPins(uint8_t type) { return isVirtual(type) ? 4 : isPWM(type) ? numPWMPins(type) : is2Pin(type) + 1; } // credit @PaoloTK
|
||||
static constexpr unsigned getNumberOfChannels(uint8_t type) { return hasWhite(type) + 3*hasRGB(type) + hasCCT(type); }
|
||||
static constexpr bool hasRGB(uint8_t type) {
|
||||
return !((type >= TYPE_WS2812_1CH && type <= TYPE_WS2812_WWA) || type == TYPE_ANALOG_1CH || type == TYPE_ANALOG_2CH || type == TYPE_ONOFF);
|
||||
}
|
||||
@@ -154,7 +178,7 @@ class Bus {
|
||||
static inline uint8_t getGlobalAWMode() { return _gAWM; }
|
||||
static inline void setCCT(int16_t cct) { _cct = cct; }
|
||||
static inline uint8_t getCCTBlend() { return _cctBlend; }
|
||||
static inline void setCCTBlend(uint8_t b) {
|
||||
static inline void setCCTBlend(uint8_t b) {
|
||||
_cctBlend = (std::min((int)b,100) * 127) / 100;
|
||||
//compile-time limiter for hardware that can't power both white channels at max
|
||||
#ifdef WLED_MAX_CCT_BLEND
|
||||
@@ -193,7 +217,7 @@ class Bus {
|
||||
|
||||
uint32_t autoWhiteCalc(uint32_t c) const;
|
||||
uint8_t *allocateData(size_t size = 1);
|
||||
void freeData() { if (_data != nullptr) free(_data); _data = nullptr; }
|
||||
void freeData();
|
||||
};
|
||||
|
||||
|
||||
@@ -210,13 +234,13 @@ class BusDigital : public Bus {
|
||||
void setColorOrder(uint8_t colorOrder) override;
|
||||
[[gnu::hot]] uint32_t getPixelColor(unsigned pix) const override;
|
||||
uint8_t getColorOrder() const override { return _colorOrder; }
|
||||
unsigned getPins(uint8_t* pinArray = nullptr) const override;
|
||||
unsigned skippedLeds() const override { return _skip; }
|
||||
unsigned getPins(uint8_t* pinArray = nullptr) const override;
|
||||
unsigned skippedLeds() const override { return _skip; }
|
||||
uint16_t getFrequency() const override { return _frequencykHz; }
|
||||
uint16_t getLEDCurrent() const override { return _milliAmpsPerLed; }
|
||||
uint16_t getUsedCurrent() const override { return _milliAmpsTotal; }
|
||||
uint16_t getMaxCurrent() const override { return _milliAmpsMax; }
|
||||
unsigned getBufferSize() const override;
|
||||
unsigned getBusSize() const override;
|
||||
void begin() override;
|
||||
void cleanup();
|
||||
|
||||
@@ -246,7 +270,7 @@ class BusDigital : public Bus {
|
||||
return c;
|
||||
}
|
||||
|
||||
uint8_t estimateCurrentAndLimitBri();
|
||||
uint8_t estimateCurrentAndLimitBri() const;
|
||||
};
|
||||
|
||||
|
||||
@@ -259,9 +283,9 @@ class BusPwm : public Bus {
|
||||
uint32_t getPixelColor(unsigned pix) const override; //does no index check
|
||||
unsigned getPins(uint8_t* pinArray = nullptr) const override;
|
||||
uint16_t getFrequency() const override { return _frequency; }
|
||||
unsigned getBufferSize() const override { return OUTPUT_MAX_PINS; }
|
||||
unsigned getBusSize() const override { return sizeof(BusPwm); }
|
||||
void show() override;
|
||||
void cleanup() { deallocatePins(); }
|
||||
inline void cleanup() { deallocatePins(); _data = nullptr; }
|
||||
|
||||
static std::vector<LEDType> getLEDTypes();
|
||||
|
||||
@@ -286,8 +310,9 @@ class BusOnOff : public Bus {
|
||||
void setPixelColor(unsigned pix, uint32_t c) override;
|
||||
uint32_t getPixelColor(unsigned pix) const override;
|
||||
unsigned getPins(uint8_t* pinArray) const override;
|
||||
unsigned getBusSize() const override { return sizeof(BusOnOff); }
|
||||
void show() override;
|
||||
void cleanup() { PinManager::deallocatePin(_pin, PinOwner::BusOnOff); }
|
||||
inline void cleanup() { PinManager::deallocatePin(_pin, PinOwner::BusOnOff); _data = nullptr; }
|
||||
|
||||
static std::vector<LEDType> getLEDTypes();
|
||||
|
||||
@@ -303,10 +328,10 @@ class BusNetwork : public Bus {
|
||||
~BusNetwork() { cleanup(); }
|
||||
|
||||
bool canShow() const override { return !_broadcastLock; } // this should be a return value from UDP routine if it is still sending data out
|
||||
void setPixelColor(unsigned pix, uint32_t c) override;
|
||||
uint32_t getPixelColor(unsigned pix) const override;
|
||||
[[gnu::hot]] void setPixelColor(unsigned pix, uint32_t c) override;
|
||||
[[gnu::hot]] uint32_t getPixelColor(unsigned pix) const override;
|
||||
unsigned getPins(uint8_t* pinArray = nullptr) const override;
|
||||
unsigned getBufferSize() const override { return isOk() ? _len * _UDPchannels : 0; }
|
||||
unsigned getBusSize() const override { return sizeof(BusNetwork) + (isOk() ? _len * _UDPchannels : 0); }
|
||||
void show() override;
|
||||
void cleanup();
|
||||
|
||||
@@ -352,6 +377,16 @@ struct BusConfig {
|
||||
type = busType & 0x7F; // bit 7 may be/is hacked to include refresh info (1=refresh in off state, 0=no refresh)
|
||||
size_t nPins = Bus::getNumberOfPins(type);
|
||||
for (size_t i = 0; i < nPins; i++) pins[i] = ppins[i];
|
||||
DEBUGBUS_PRINTF_P(PSTR("Bus: Config (%d-%d, type:%d, CO:%d, rev:%d, skip:%d, AW:%d kHz:%d, mA:%d/%d)\n"),
|
||||
(int)start, (int)(start+len),
|
||||
(int)type,
|
||||
(int)colorOrder,
|
||||
(int)reversed,
|
||||
(int)skipAmount,
|
||||
(int)autoWhite,
|
||||
(int)frequency,
|
||||
(int)milliAmpsPerLed, (int)milliAmpsMax
|
||||
);
|
||||
}
|
||||
|
||||
//validates start and length and extends total if needed
|
||||
@@ -365,6 +400,8 @@ struct BusConfig {
|
||||
if (start + count > total) total = start + count;
|
||||
return true;
|
||||
}
|
||||
|
||||
unsigned memUsage(unsigned nr = 0) const;
|
||||
};
|
||||
|
||||
|
||||
@@ -382,9 +419,7 @@ class BusManager {
|
||||
public:
|
||||
BusManager() {};
|
||||
|
||||
//utility to get the approx. memory usage of a given BusConfig
|
||||
static uint32_t memUsage(const BusConfig &bc);
|
||||
static unsigned getTotalBuffers();
|
||||
static unsigned memUsage();
|
||||
static uint16_t currentMilliamps() { return _milliAmpsUsed + MA_FOR_ESP; }
|
||||
static uint16_t ablMilliampsMax() { return _milliAmpsMax; }
|
||||
|
||||
@@ -414,14 +449,13 @@ class BusManager {
|
||||
|
||||
//semi-duplicate of strip.getLengthTotal() (though that just returns strip._length, calculated in finalizeInit())
|
||||
static uint16_t getTotalLength();
|
||||
static inline uint8_t getNumBusses() { return numBusses; }
|
||||
static inline uint8_t getNumBusses() { return busses.size(); }
|
||||
static String getLEDTypesJSONString();
|
||||
|
||||
static inline ColorOrderMap& getColorOrderMap() { return colorOrderMap; }
|
||||
|
||||
private:
|
||||
static uint8_t numBusses;
|
||||
static Bus* busses[WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES];
|
||||
static std::vector<Bus*> busses;
|
||||
static ColorOrderMap colorOrderMap;
|
||||
static uint16_t _milliAmpsUsed;
|
||||
static uint16_t _milliAmpsMax;
|
||||
@@ -431,7 +465,7 @@ class BusManager {
|
||||
#endif
|
||||
static uint8_t getNumVirtualBusses() {
|
||||
int j = 0;
|
||||
for (int i=0; i<numBusses; i++) if (busses[i]->isVirtual()) j++;
|
||||
for (const auto &bus : busses) j += bus->isVirtual();
|
||||
return j;
|
||||
}
|
||||
};
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
#pragma once
|
||||
#ifndef BusWrapper_h
|
||||
#define BusWrapper_h
|
||||
|
||||
@@ -471,8 +472,8 @@ class PolyBus {
|
||||
#if defined(ARDUINO_ARCH_ESP32) && !(defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3) || defined(CONFIG_IDF_TARGET_ESP32C3))
|
||||
// NOTE: "channel" is only used on ESP32 (and its variants) for RMT channel allocation
|
||||
// since 0.15.0-b3 I2S1 is favoured for classic ESP32 and moved to position 0 (channel 0) so we need to subtract 1 for correct RMT allocation
|
||||
if (_useParallelI2S && channel > 7) channel -= 8; // accommodate parallel I2S1 which is used 1st on classic ESP32
|
||||
else if (channel > 0) channel--; // accommodate I2S1 which is used as 1st bus on classic ESP32
|
||||
if (!_useParallelI2S && channel > 0) channel--; // accommodate I2S1 which is used as 1st bus on classic ESP32
|
||||
// if user selected parallel I2S, RMT is used 1st (8 channels) followed by parallel I2S (8 channels)
|
||||
#endif
|
||||
void* busPtr = nullptr;
|
||||
switch (busType) {
|
||||
@@ -700,6 +701,7 @@ class PolyBus {
|
||||
case I_8266_U0_UCS_4: return (static_cast<B_8266_U0_UCS_4*>(busPtr))->CanShow(); break;
|
||||
case I_8266_U1_UCS_4: return (static_cast<B_8266_U1_UCS_4*>(busPtr))->CanShow(); break;
|
||||
case I_8266_DM_UCS_4: return (static_cast<B_8266_DM_UCS_4*>(busPtr))->CanShow(); break;
|
||||
case I_8266_BB_UCS_4: return (static_cast<B_8266_BB_UCS_4*>(busPtr))->CanShow(); break;
|
||||
case I_8266_U0_APA106_3: return (static_cast<B_8266_U0_APA106_3*>(busPtr))->CanShow(); break;
|
||||
case I_8266_U1_APA106_3: return (static_cast<B_8266_U1_APA106_3*>(busPtr))->CanShow(); break;
|
||||
case I_8266_DM_APA106_3: return (static_cast<B_8266_DM_APA106_3*>(busPtr))->CanShow(); break;
|
||||
@@ -765,7 +767,7 @@ class PolyBus {
|
||||
return true;
|
||||
}
|
||||
|
||||
static void setPixelColor(void* busPtr, uint8_t busType, uint16_t pix, uint32_t c, uint8_t co, uint16_t wwcw = 0) {
|
||||
[[gnu::hot]] static void setPixelColor(void* busPtr, uint8_t busType, uint16_t pix, uint32_t c, uint8_t co, uint16_t wwcw = 0) {
|
||||
uint8_t r = c >> 16;
|
||||
uint8_t g = c >> 8;
|
||||
uint8_t b = c >> 0;
|
||||
@@ -982,7 +984,7 @@ class PolyBus {
|
||||
}
|
||||
}
|
||||
|
||||
static uint32_t getPixelColor(void* busPtr, uint8_t busType, uint16_t pix, uint8_t co) {
|
||||
[[gnu::hot]] static uint32_t getPixelColor(void* busPtr, uint8_t busType, uint16_t pix, uint8_t co) {
|
||||
RgbwColor col(0,0,0,0);
|
||||
switch (busType) {
|
||||
case I_NONE: break;
|
||||
@@ -1199,57 +1201,57 @@ class PolyBus {
|
||||
switch (busType) {
|
||||
case I_NONE: break;
|
||||
#ifdef ESP8266
|
||||
case I_8266_U0_NEO_3: size = (static_cast<B_8266_U0_NEO_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U1_NEO_3: size = (static_cast<B_8266_U1_NEO_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U0_NEO_3: size = (static_cast<B_8266_U0_NEO_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U1_NEO_3: size = (static_cast<B_8266_U1_NEO_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_DM_NEO_3: size = (static_cast<B_8266_DM_NEO_3*>(busPtr))->PixelsSize()*5; break;
|
||||
case I_8266_BB_NEO_3: size = (static_cast<B_8266_BB_NEO_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U0_NEO_4: size = (static_cast<B_8266_U0_NEO_4*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U1_NEO_4: size = (static_cast<B_8266_U1_NEO_4*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_BB_NEO_3: size = (static_cast<B_8266_BB_NEO_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U0_NEO_4: size = (static_cast<B_8266_U0_NEO_4*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U1_NEO_4: size = (static_cast<B_8266_U1_NEO_4*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_DM_NEO_4: size = (static_cast<B_8266_DM_NEO_4*>(busPtr))->PixelsSize()*5; break;
|
||||
case I_8266_BB_NEO_4: size = (static_cast<B_8266_BB_NEO_4*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U0_400_3: size = (static_cast<B_8266_U0_400_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U1_400_3: size = (static_cast<B_8266_U1_400_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_BB_NEO_4: size = (static_cast<B_8266_BB_NEO_4*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U0_400_3: size = (static_cast<B_8266_U0_400_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U1_400_3: size = (static_cast<B_8266_U1_400_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_DM_400_3: size = (static_cast<B_8266_DM_400_3*>(busPtr))->PixelsSize()*5; break;
|
||||
case I_8266_BB_400_3: size = (static_cast<B_8266_BB_400_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U0_TM1_4: size = (static_cast<B_8266_U0_TM1_4*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U1_TM1_4: size = (static_cast<B_8266_U1_TM1_4*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_BB_400_3: size = (static_cast<B_8266_BB_400_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U0_TM1_4: size = (static_cast<B_8266_U0_TM1_4*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U1_TM1_4: size = (static_cast<B_8266_U1_TM1_4*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_DM_TM1_4: size = (static_cast<B_8266_DM_TM1_4*>(busPtr))->PixelsSize()*5; break;
|
||||
case I_8266_BB_TM1_4: size = (static_cast<B_8266_BB_TM1_4*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U0_TM2_3: size = (static_cast<B_8266_U0_TM2_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U1_TM2_3: size = (static_cast<B_8266_U1_TM2_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_BB_TM1_4: size = (static_cast<B_8266_BB_TM1_4*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U0_TM2_3: size = (static_cast<B_8266_U0_TM2_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U1_TM2_3: size = (static_cast<B_8266_U1_TM2_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_DM_TM2_3: size = (static_cast<B_8266_DM_TM2_3*>(busPtr))->PixelsSize()*5; break;
|
||||
case I_8266_BB_TM2_3: size = (static_cast<B_8266_BB_TM2_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U0_UCS_3: size = (static_cast<B_8266_U0_UCS_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U1_UCS_3: size = (static_cast<B_8266_U1_UCS_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_BB_TM2_3: size = (static_cast<B_8266_BB_TM2_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U0_UCS_3: size = (static_cast<B_8266_U0_UCS_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U1_UCS_3: size = (static_cast<B_8266_U1_UCS_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_DM_UCS_3: size = (static_cast<B_8266_DM_UCS_3*>(busPtr))->PixelsSize()*5; break;
|
||||
case I_8266_BB_UCS_3: size = (static_cast<B_8266_BB_UCS_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U0_UCS_4: size = (static_cast<B_8266_U0_UCS_4*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U1_UCS_4: size = (static_cast<B_8266_U1_UCS_4*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_BB_UCS_3: size = (static_cast<B_8266_BB_UCS_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U0_UCS_4: size = (static_cast<B_8266_U0_UCS_4*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U1_UCS_4: size = (static_cast<B_8266_U1_UCS_4*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_DM_UCS_4: size = (static_cast<B_8266_DM_UCS_4*>(busPtr))->PixelsSize()*5; break;
|
||||
case I_8266_BB_UCS_4: size = (static_cast<B_8266_BB_UCS_4*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U0_APA106_3: size = (static_cast<B_8266_U0_APA106_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U1_APA106_3: size = (static_cast<B_8266_U1_APA106_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_BB_UCS_4: size = (static_cast<B_8266_BB_UCS_4*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U0_APA106_3: size = (static_cast<B_8266_U0_APA106_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U1_APA106_3: size = (static_cast<B_8266_U1_APA106_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_DM_APA106_3: size = (static_cast<B_8266_DM_APA106_3*>(busPtr))->PixelsSize()*5; break;
|
||||
case I_8266_BB_APA106_3: size = (static_cast<B_8266_BB_APA106_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U0_FW6_5: size = (static_cast<B_8266_U0_FW6_5*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U1_FW6_5: size = (static_cast<B_8266_U1_FW6_5*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_BB_APA106_3: size = (static_cast<B_8266_BB_APA106_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U0_FW6_5: size = (static_cast<B_8266_U0_FW6_5*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U1_FW6_5: size = (static_cast<B_8266_U1_FW6_5*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_DM_FW6_5: size = (static_cast<B_8266_DM_FW6_5*>(busPtr))->PixelsSize()*5; break;
|
||||
case I_8266_BB_FW6_5: size = (static_cast<B_8266_BB_FW6_5*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U0_2805_5: size = (static_cast<B_8266_U0_2805_5*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U1_2805_5: size = (static_cast<B_8266_U1_2805_5*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_BB_FW6_5: size = (static_cast<B_8266_BB_FW6_5*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U0_2805_5: size = (static_cast<B_8266_U0_2805_5*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U1_2805_5: size = (static_cast<B_8266_U1_2805_5*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_DM_2805_5: size = (static_cast<B_8266_DM_2805_5*>(busPtr))->PixelsSize()*5; break;
|
||||
case I_8266_BB_2805_5: size = (static_cast<B_8266_BB_2805_5*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U0_TM1914_3: size = (static_cast<B_8266_U0_TM1914_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U1_TM1914_3: size = (static_cast<B_8266_U1_TM1914_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_BB_2805_5: size = (static_cast<B_8266_BB_2805_5*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U0_TM1914_3: size = (static_cast<B_8266_U0_TM1914_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U1_TM1914_3: size = (static_cast<B_8266_U1_TM1914_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_DM_TM1914_3: size = (static_cast<B_8266_DM_TM1914_3*>(busPtr))->PixelsSize()*5; break;
|
||||
case I_8266_BB_TM1914_3: size = (static_cast<B_8266_BB_TM1914_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U0_SM16825_5: size = (static_cast<B_8266_U0_SM16825_5*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_U1_SM16825_5: size = (static_cast<B_8266_U1_SM16825_5*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_BB_TM1914_3: size = (static_cast<B_8266_BB_TM1914_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U0_SM16825_5: size = (static_cast<B_8266_U0_SM16825_5*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_U1_SM16825_5: size = (static_cast<B_8266_U1_SM16825_5*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_8266_DM_SM16825_5: size = (static_cast<B_8266_DM_SM16825_5*>(busPtr))->PixelsSize()*5; break;
|
||||
case I_8266_BB_SM16825_5: size = (static_cast<B_8266_BB_SM16825_5*>(busPtr))->PixelsSize(); break;
|
||||
case I_8266_BB_SM16825_5: size = (static_cast<B_8266_BB_SM16825_5*>(busPtr))->PixelsSize()*2; break;
|
||||
#endif
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
// RMT buses
|
||||
// RMT buses (front + back + small system managed RMT)
|
||||
case I_32_RN_NEO_3: size = (static_cast<B_32_RN_NEO_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_32_RN_NEO_4: size = (static_cast<B_32_RN_NEO_4*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_32_RN_400_3: size = (static_cast<B_32_RN_400_3*>(busPtr))->PixelsSize()*2; break;
|
||||
@@ -1262,38 +1264,110 @@ class PolyBus {
|
||||
case I_32_RN_2805_5: size = (static_cast<B_32_RN_2805_5*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_32_RN_TM1914_3: size = (static_cast<B_32_RN_TM1914_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_32_RN_SM16825_5: size = (static_cast<B_32_RN_SM16825_5*>(busPtr))->PixelsSize()*2; break;
|
||||
// I2S1 bus or paralell buses
|
||||
// I2S1 bus or paralell buses (front + DMA; DMA = front * cadence, aligned to 4 bytes)
|
||||
#ifndef CONFIG_IDF_TARGET_ESP32C3
|
||||
case I_32_I2_NEO_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_NEO_3*>(busPtr))->PixelsSize()*16 : (static_cast<B_32_I2_NEO_3*>(busPtr))->PixelsSize()*8; break;
|
||||
case I_32_I2_NEO_4: size = (_useParallelI2S) ? (static_cast<B_32_IP_NEO_4*>(busPtr))->PixelsSize()*16 : (static_cast<B_32_I2_NEO_4*>(busPtr))->PixelsSize()*8; break;
|
||||
case I_32_I2_400_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_400_3*>(busPtr))->PixelsSize()*16 : (static_cast<B_32_I2_400_3*>(busPtr))->PixelsSize()*8; break;
|
||||
case I_32_I2_TM1_4: size = (_useParallelI2S) ? (static_cast<B_32_IP_TM1_4*>(busPtr))->PixelsSize()*16 : (static_cast<B_32_I2_TM1_4*>(busPtr))->PixelsSize()*8; break;
|
||||
case I_32_I2_TM2_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_TM2_3*>(busPtr))->PixelsSize()*16 : (static_cast<B_32_I2_TM2_3*>(busPtr))->PixelsSize()*8; break;
|
||||
case I_32_I2_UCS_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_UCS_3*>(busPtr))->PixelsSize()*16 : (static_cast<B_32_I2_UCS_3*>(busPtr))->PixelsSize()*8; break;
|
||||
case I_32_I2_UCS_4: size = (_useParallelI2S) ? (static_cast<B_32_IP_UCS_4*>(busPtr))->PixelsSize()*16 : (static_cast<B_32_I2_UCS_4*>(busPtr))->PixelsSize()*8; break;
|
||||
case I_32_I2_APA106_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_APA106_3*>(busPtr))->PixelsSize()*16 : (static_cast<B_32_I2_APA106_3*>(busPtr))->PixelsSize()*8; break;
|
||||
case I_32_I2_FW6_5: size = (_useParallelI2S) ? (static_cast<B_32_IP_FW6_5*>(busPtr))->PixelsSize()*16 : (static_cast<B_32_I2_FW6_5*>(busPtr))->PixelsSize()*8; break;
|
||||
case I_32_I2_2805_5: size = (_useParallelI2S) ? (static_cast<B_32_IP_2805_5*>(busPtr))->PixelsSize()*16 : (static_cast<B_32_I2_2805_5*>(busPtr))->PixelsSize()*8; break;
|
||||
case I_32_I2_TM1914_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_TM1914_3*>(busPtr))->PixelsSize()*16 : (static_cast<B_32_I2_TM1914_3*>(busPtr))->PixelsSize()*8; break;
|
||||
case I_32_I2_SM16825_5: size = (_useParallelI2S) ? (static_cast<B_32_IP_SM16825_5*>(busPtr))->PixelsSize()*16 : (static_cast<B_32_I2_SM16825_5*>(busPtr))->PixelsSize()*8; break;
|
||||
case I_32_I2_NEO_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_NEO_3*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_NEO_3*>(busPtr))->PixelsSize()*4; break;
|
||||
case I_32_I2_NEO_4: size = (_useParallelI2S) ? (static_cast<B_32_IP_NEO_4*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_NEO_4*>(busPtr))->PixelsSize()*4; break;
|
||||
case I_32_I2_400_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_400_3*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_400_3*>(busPtr))->PixelsSize()*4; break;
|
||||
case I_32_I2_TM1_4: size = (_useParallelI2S) ? (static_cast<B_32_IP_TM1_4*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_TM1_4*>(busPtr))->PixelsSize()*4; break;
|
||||
case I_32_I2_TM2_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_TM2_3*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_TM2_3*>(busPtr))->PixelsSize()*4; break;
|
||||
case I_32_I2_UCS_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_UCS_3*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_UCS_3*>(busPtr))->PixelsSize()*4; break;
|
||||
case I_32_I2_UCS_4: size = (_useParallelI2S) ? (static_cast<B_32_IP_UCS_4*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_UCS_4*>(busPtr))->PixelsSize()*4; break;
|
||||
case I_32_I2_APA106_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_APA106_3*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_APA106_3*>(busPtr))->PixelsSize()*4; break;
|
||||
case I_32_I2_FW6_5: size = (_useParallelI2S) ? (static_cast<B_32_IP_FW6_5*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_FW6_5*>(busPtr))->PixelsSize()*4; break;
|
||||
case I_32_I2_2805_5: size = (_useParallelI2S) ? (static_cast<B_32_IP_2805_5*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_2805_5*>(busPtr))->PixelsSize()*4; break;
|
||||
case I_32_I2_TM1914_3: size = (_useParallelI2S) ? (static_cast<B_32_IP_TM1914_3*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_TM1914_3*>(busPtr))->PixelsSize()*4; break;
|
||||
case I_32_I2_SM16825_5: size = (_useParallelI2S) ? (static_cast<B_32_IP_SM16825_5*>(busPtr))->PixelsSize()*4 : (static_cast<B_32_I2_SM16825_5*>(busPtr))->PixelsSize()*4; break;
|
||||
#endif
|
||||
#endif
|
||||
case I_HS_DOT_3: size = (static_cast<B_HS_DOT_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_SS_DOT_3: size = (static_cast<B_SS_DOT_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_HS_LPD_3: size = (static_cast<B_HS_LPD_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_SS_LPD_3: size = (static_cast<B_SS_LPD_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_HS_LPO_3: size = (static_cast<B_HS_LPO_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_SS_LPO_3: size = (static_cast<B_SS_LPO_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_HS_WS1_3: size = (static_cast<B_HS_WS1_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_SS_WS1_3: size = (static_cast<B_SS_WS1_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_HS_P98_3: size = (static_cast<B_HS_P98_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_SS_P98_3: size = (static_cast<B_SS_P98_3*>(busPtr))->PixelsSize(); break;
|
||||
case I_HS_DOT_3: size = (static_cast<B_HS_DOT_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_SS_DOT_3: size = (static_cast<B_SS_DOT_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_HS_LPD_3: size = (static_cast<B_HS_LPD_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_SS_LPD_3: size = (static_cast<B_SS_LPD_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_HS_LPO_3: size = (static_cast<B_HS_LPO_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_SS_LPO_3: size = (static_cast<B_SS_LPO_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_HS_WS1_3: size = (static_cast<B_HS_WS1_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_SS_WS1_3: size = (static_cast<B_SS_WS1_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_HS_P98_3: size = (static_cast<B_HS_P98_3*>(busPtr))->PixelsSize()*2; break;
|
||||
case I_SS_P98_3: size = (static_cast<B_SS_P98_3*>(busPtr))->PixelsSize()*2; break;
|
||||
}
|
||||
return size;
|
||||
}
|
||||
|
||||
static unsigned memUsage(unsigned count, unsigned busType) {
|
||||
unsigned size = count*3; // let's assume 3 channels, we will add count or 2*count below for 4 channels or 5 channels
|
||||
switch (busType) {
|
||||
case I_NONE: size = 0; break;
|
||||
#ifdef ESP8266
|
||||
// UART methods have front + back buffers + small UART
|
||||
case I_8266_U0_NEO_4: size = (size + count)*2; break; // 4 channels
|
||||
case I_8266_U1_NEO_4: size = (size + count)*2; break; // 4 channels
|
||||
case I_8266_BB_NEO_4: size = (size + count)*2; break; // 4 channels
|
||||
case I_8266_U0_TM1_4: size = (size + count)*2; break; // 4 channels
|
||||
case I_8266_U1_TM1_4: size = (size + count)*2; break; // 4 channels
|
||||
case I_8266_BB_TM1_4: size = (size + count)*2; break; // 4 channels
|
||||
case I_8266_U0_UCS_3: size *= 4; break; // 16 bit
|
||||
case I_8266_U1_UCS_3: size *= 4; break; // 16 bit
|
||||
case I_8266_BB_UCS_3: size *= 4; break; // 16 bit
|
||||
case I_8266_U0_UCS_4: size = (size + count)*2*2; break; // 16 bit 4 channels
|
||||
case I_8266_U1_UCS_4: size = (size + count)*2*2; break; // 16 bit 4 channels
|
||||
case I_8266_BB_UCS_4: size = (size + count)*2*2; break; // 16 bit 4 channels
|
||||
case I_8266_U0_FW6_5: size = (size + 2*count)*2; break; // 5 channels
|
||||
case I_8266_U1_FW6_5: size = (size + 2*count)*2; break; // 5channels
|
||||
case I_8266_BB_FW6_5: size = (size + 2*count)*2; break; // 5 channels
|
||||
case I_8266_U0_2805_5: size = (size + 2*count)*2; break; // 5 channels
|
||||
case I_8266_U1_2805_5: size = (size + 2*count)*2; break; // 5 channels
|
||||
case I_8266_BB_2805_5: size = (size + 2*count)*2; break; // 5 channels
|
||||
case I_8266_U0_SM16825_5: size = (size + 2*count)*2*2; break; // 16 bit 5 channels
|
||||
case I_8266_U1_SM16825_5: size = (size + 2*count)*2*2; break; // 16 bit 5 channels
|
||||
case I_8266_BB_SM16825_5: size = (size + 2*count)*2*2; break; // 16 bit 5 channels
|
||||
// DMA methods have front + DMA buffer = ((1+(3+1)) * channels)
|
||||
case I_8266_DM_NEO_3: size *= 5; break;
|
||||
case I_8266_DM_NEO_4: size = (size + count)*5; break;
|
||||
case I_8266_DM_400_3: size *= 5; break;
|
||||
case I_8266_DM_TM1_4: size = (size + count)*5; break;
|
||||
case I_8266_DM_TM2_3: size *= 5; break;
|
||||
case I_8266_DM_UCS_3: size *= 2*5; break;
|
||||
case I_8266_DM_UCS_4: size = (size + count)*2*5; break;
|
||||
case I_8266_DM_APA106_3: size *= 5; break;
|
||||
case I_8266_DM_FW6_5: size = (size + 2*count)*5; break;
|
||||
case I_8266_DM_2805_5: size = (size + 2*count)*5; break;
|
||||
case I_8266_DM_TM1914_3: size *= 5; break;
|
||||
case I_8266_DM_SM16825_5: size = (size + 2*count)*2*5; break;
|
||||
#endif
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
// RMT buses (1x front and 1x back buffer)
|
||||
case I_32_RN_NEO_4: size = (size + count)*2; break;
|
||||
case I_32_RN_TM1_4: size = (size + count)*2; break;
|
||||
case I_32_RN_UCS_3: size *= 2*2; break;
|
||||
case I_32_RN_UCS_4: size = (size + count)*2*2; break;
|
||||
case I_32_RN_FW6_5: size = (size + 2*count)*2; break;
|
||||
case I_32_RN_2805_5: size = (size + 2*count)*2; break;
|
||||
case I_32_RN_SM16825_5: size = (size + 2*count)*2*2; break;
|
||||
// I2S1 bus or paralell buses (individual 1x front and 1 DMA (3x or 4x pixel count) or common back DMA buffers)
|
||||
#ifndef CONFIG_IDF_TARGET_ESP32C3
|
||||
case I_32_I2_NEO_3: size *= 4; break;
|
||||
case I_32_I2_NEO_4: size = (size + count)*4; break;
|
||||
case I_32_I2_400_3: size *= 4; break;
|
||||
case I_32_I2_TM1_4: size = (size + count)*4; break;
|
||||
case I_32_I2_TM2_3: size *= 4; break;
|
||||
case I_32_I2_UCS_3: size *= 2*4; break;
|
||||
case I_32_I2_UCS_4: size = (size + count)*2*4; break;
|
||||
case I_32_I2_APA106_3: size *= 4; break;
|
||||
case I_32_I2_FW6_5: size = (size + 2*count)*4; break;
|
||||
case I_32_I2_2805_5: size = (size + 2*count)*4; break;
|
||||
case I_32_I2_TM1914_3: size *= 4; break;
|
||||
case I_32_I2_SM16825_5: size = (size + 2*count)*2*4; break;
|
||||
#endif
|
||||
#endif
|
||||
// everything else uses 2 buffers
|
||||
default: size *= 2; break;
|
||||
}
|
||||
return size;
|
||||
}
|
||||
|
||||
//gives back the internal type index (I_XX_XXX_X above) for the input
|
||||
static uint8_t getI(uint8_t busType, uint8_t* pins, uint8_t num = 0) {
|
||||
static uint8_t getI(uint8_t busType, const uint8_t* pins, uint8_t num = 0) {
|
||||
if (!Bus::isDigital(busType)) return I_NONE;
|
||||
if (Bus::is2Pin(busType)) { //SPI LED chips
|
||||
bool isHSPI = false;
|
||||
@@ -1375,7 +1449,7 @@ class PolyBus {
|
||||
// standard ESP32 has 8 RMT and x1/x8 I2S1 channels
|
||||
if (_useParallelI2S) {
|
||||
if (num > 15) return I_NONE;
|
||||
if (num < 8) offset = 1; // prefer 8 parallel I2S1 channels
|
||||
if (num > 7) offset = 1; // 8 RMT followed by 8 I2S
|
||||
} else {
|
||||
if (num > 9) return I_NONE;
|
||||
if (num == 0) offset = 1; // prefer I2S1 for 1st bus (less flickering but more RAM needed)
|
||||
|
||||
@@ -29,7 +29,7 @@ void shortPressAction(uint8_t b)
|
||||
#ifndef WLED_DISABLE_MQTT
|
||||
// publish MQTT message
|
||||
if (buttonPublishMqtt && WLED_MQTT_CONNECTED) {
|
||||
char subuf[64];
|
||||
char subuf[MQTT_MAX_TOPIC_LEN + 32];
|
||||
sprintf_P(subuf, _mqtt_topic_button, mqttDeviceTopic, (int)b);
|
||||
mqtt->publish(subuf, 0, false, "short");
|
||||
}
|
||||
@@ -62,7 +62,7 @@ void longPressAction(uint8_t b)
|
||||
#ifndef WLED_DISABLE_MQTT
|
||||
// publish MQTT message
|
||||
if (buttonPublishMqtt && WLED_MQTT_CONNECTED) {
|
||||
char subuf[64];
|
||||
char subuf[MQTT_MAX_TOPIC_LEN + 32];
|
||||
sprintf_P(subuf, _mqtt_topic_button, mqttDeviceTopic, (int)b);
|
||||
mqtt->publish(subuf, 0, false, "long");
|
||||
}
|
||||
@@ -83,19 +83,19 @@ void doublePressAction(uint8_t b)
|
||||
#ifndef WLED_DISABLE_MQTT
|
||||
// publish MQTT message
|
||||
if (buttonPublishMqtt && WLED_MQTT_CONNECTED) {
|
||||
char subuf[64];
|
||||
char subuf[MQTT_MAX_TOPIC_LEN + 32];
|
||||
sprintf_P(subuf, _mqtt_topic_button, mqttDeviceTopic, (int)b);
|
||||
mqtt->publish(subuf, 0, false, "double");
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
bool isButtonPressed(uint8_t i)
|
||||
bool isButtonPressed(uint8_t b)
|
||||
{
|
||||
if (btnPin[i]<0) return false;
|
||||
unsigned pin = btnPin[i];
|
||||
if (btnPin[b]<0) return false;
|
||||
unsigned pin = btnPin[b];
|
||||
|
||||
switch (buttonType[i]) {
|
||||
switch (buttonType[b]) {
|
||||
case BTN_TYPE_NONE:
|
||||
case BTN_TYPE_RESERVED:
|
||||
break;
|
||||
@@ -113,7 +113,7 @@ bool isButtonPressed(uint8_t i)
|
||||
#ifdef SOC_TOUCH_VERSION_2 //ESP32 S2 and S3 provide a function to check touch state (state is updated in interrupt)
|
||||
if (touchInterruptGetLastStatus(pin)) return true;
|
||||
#else
|
||||
if (digitalPinToTouchChannel(btnPin[i]) >= 0 && touchRead(pin) <= touchThreshold) return true;
|
||||
if (digitalPinToTouchChannel(btnPin[b]) >= 0 && touchRead(pin) <= touchThreshold) return true;
|
||||
#endif
|
||||
#endif
|
||||
break;
|
||||
@@ -151,7 +151,7 @@ void handleSwitch(uint8_t b)
|
||||
#ifndef WLED_DISABLE_MQTT
|
||||
// publish MQTT message
|
||||
if (buttonPublishMqtt && WLED_MQTT_CONNECTED) {
|
||||
char subuf[64];
|
||||
char subuf[MQTT_MAX_TOPIC_LEN + 32];
|
||||
if (buttonType[b] == BTN_TYPE_PIR_SENSOR) sprintf_P(subuf, PSTR("%s/motion/%d"), mqttDeviceTopic, (int)b);
|
||||
else sprintf_P(subuf, _mqtt_topic_button, mqttDeviceTopic, (int)b);
|
||||
mqtt->publish(subuf, 0, false, !buttonPressedBefore[b] ? "off" : "on");
|
||||
@@ -375,6 +375,7 @@ void handleIO()
|
||||
if (rlyPin>=0) {
|
||||
pinMode(rlyPin, rlyOpenDrain ? OUTPUT_OPEN_DRAIN : OUTPUT);
|
||||
digitalWrite(rlyPin, rlyMde);
|
||||
delay(50); // wait for relay to switch and power to stabilize
|
||||
}
|
||||
offMode = false;
|
||||
}
|
||||
|
||||
@@ -114,8 +114,9 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
|
||||
CJSON(strip.correctWB, hw_led["cct"]);
|
||||
CJSON(strip.cctFromRgb, hw_led[F("cr")]);
|
||||
CJSON(cctICused, hw_led[F("ic")]);
|
||||
CJSON(strip.cctBlending, hw_led[F("cb")]);
|
||||
Bus::setCCTBlend(strip.cctBlending);
|
||||
int cctBlending = 0;
|
||||
CJSON(cctBlending, hw_led[F("cb")]);
|
||||
Bus::setCCTBlend(cctBlending);
|
||||
strip.setTargetFps(hw_led["fps"]); //NOP if 0, default 42 FPS
|
||||
CJSON(useGlobalLedBuffer, hw_led[F("ld")]);
|
||||
#if defined(ARDUINO_ARCH_ESP32) && !defined(CONFIG_IDF_TARGET_ESP32C3)
|
||||
@@ -196,8 +197,7 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
|
||||
}
|
||||
ledType |= refresh << 7; // hack bit 7 to indicate strip requires off refresh
|
||||
|
||||
if (busConfigs[s] != nullptr) delete busConfigs[s];
|
||||
busConfigs[s] = new BusConfig(ledType, pins, start, length, colorOrder, reversed, skipFirst, AWmode, freqkHz, useGlobalLedBuffer, maPerLed, maMax);
|
||||
busConfigs.push_back(std::move(BusConfig(ledType, pins, start, length, colorOrder, reversed, skipFirst, AWmode, freqkHz, useGlobalLedBuffer, maPerLed, maMax)));
|
||||
doInitBusses = true; // finalization done in beginStrip()
|
||||
s++;
|
||||
}
|
||||
@@ -485,6 +485,14 @@ bool deserializeConfig(JsonObject doc, bool fromFS) {
|
||||
|
||||
tdd = if_live[F("timeout")] | -1;
|
||||
if (tdd >= 0) realtimeTimeoutMs = tdd * 100;
|
||||
|
||||
#ifdef WLED_ENABLE_DMX_INPUT
|
||||
CJSON(dmxInputTransmitPin, if_live_dmx[F("inputRxPin")]);
|
||||
CJSON(dmxInputReceivePin, if_live_dmx[F("inputTxPin")]);
|
||||
CJSON(dmxInputEnablePin, if_live_dmx[F("inputEnablePin")]);
|
||||
CJSON(dmxInputPort, if_live_dmx[F("dmxInputPort")]);
|
||||
#endif
|
||||
|
||||
CJSON(arlsForceMaxBri, if_live[F("maxbri")]);
|
||||
CJSON(arlsDisableGammaCorrection, if_live[F("no-gc")]); // false
|
||||
CJSON(arlsOffset, if_live[F("offset")]); // 0
|
||||
@@ -782,7 +790,7 @@ void serializeConfig() {
|
||||
hw_led["cct"] = strip.correctWB;
|
||||
hw_led[F("cr")] = strip.cctFromRgb;
|
||||
hw_led[F("ic")] = cctICused;
|
||||
hw_led[F("cb")] = strip.cctBlending;
|
||||
hw_led[F("cb")] = Bus::getCCTBlend();
|
||||
hw_led["fps"] = strip.getTargetFps();
|
||||
hw_led[F("rgbwm")] = Bus::getGlobalAWMode(); // global auto white mode override
|
||||
hw_led[F("ld")] = useGlobalLedBuffer;
|
||||
@@ -978,6 +986,12 @@ void serializeConfig() {
|
||||
if_live_dmx[F("addr")] = DMXAddress;
|
||||
if_live_dmx[F("dss")] = DMXSegmentSpacing;
|
||||
if_live_dmx["mode"] = DMXMode;
|
||||
#ifdef WLED_ENABLE_DMX_INPUT
|
||||
if_live_dmx[F("inputRxPin")] = dmxInputTransmitPin;
|
||||
if_live_dmx[F("inputTxPin")] = dmxInputReceivePin;
|
||||
if_live_dmx[F("inputEnablePin")] = dmxInputEnablePin;
|
||||
if_live_dmx[F("dmxInputPort")] = dmxInputPort;
|
||||
#endif
|
||||
|
||||
if_live[F("timeout")] = realtimeTimeoutMs / 100;
|
||||
if_live[F("maxbri")] = arlsForceMaxBri;
|
||||
|
||||
@@ -122,7 +122,7 @@ void setRandomColor(byte* rgb)
|
||||
* generates a random palette based on harmonic color theory
|
||||
* takes a base palette as the input, it will choose one color of the base palette and keep it
|
||||
*/
|
||||
CRGBPalette16 generateHarmonicRandomPalette(CRGBPalette16 &basepalette)
|
||||
CRGBPalette16 generateHarmonicRandomPalette(const CRGBPalette16 &basepalette)
|
||||
{
|
||||
CHSV palettecolors[4]; // array of colors for the new palette
|
||||
uint8_t keepcolorposition = hw_random8(4); // color position of current random palette to keep
|
||||
@@ -391,7 +391,7 @@ void colorXYtoRGB(float x, float y, byte* rgb) //coordinates to rgb (https://www
|
||||
rgb[2] = byte(255.0f*b);
|
||||
}
|
||||
|
||||
void colorRGBtoXY(byte* rgb, float* xy) //rgb to coordinates (https://www.developers.meethue.com/documentation/color-conversions-rgb-xy)
|
||||
void colorRGBtoXY(const byte* rgb, float* xy) //rgb to coordinates (https://www.developers.meethue.com/documentation/color-conversions-rgb-xy)
|
||||
{
|
||||
float X = rgb[0] * 0.664511f + rgb[1] * 0.154324f + rgb[2] * 0.162028f;
|
||||
float Y = rgb[0] * 0.283881f + rgb[1] * 0.668433f + rgb[2] * 0.047685f;
|
||||
@@ -402,7 +402,7 @@ void colorRGBtoXY(byte* rgb, float* xy) //rgb to coordinates (https://www.develo
|
||||
#endif // WLED_DISABLE_HUESYNC
|
||||
|
||||
//RRGGBB / WWRRGGBB order for hex
|
||||
void colorFromDecOrHexString(byte* rgb, char* in)
|
||||
void colorFromDecOrHexString(byte* rgb, const char* in)
|
||||
{
|
||||
if (in[0] == 0) return;
|
||||
char first = in[0];
|
||||
|
||||
@@ -37,7 +37,7 @@
|
||||
#endif
|
||||
|
||||
#ifndef WLED_MAX_USERMODS
|
||||
#ifdef ESP8266
|
||||
#if defined(ESP8266) || defined(CONFIG_IDF_TARGET_ESP32S2)
|
||||
#define WLED_MAX_USERMODS 4
|
||||
#else
|
||||
#define WLED_MAX_USERMODS 6
|
||||
@@ -49,31 +49,31 @@
|
||||
#define WLED_MAX_DIGITAL_CHANNELS 3
|
||||
#define WLED_MAX_ANALOG_CHANNELS 5
|
||||
#define WLED_MAX_BUSSES 4 // will allow 3 digital & 1 analog RGB
|
||||
#define WLED_MIN_VIRTUAL_BUSSES 2
|
||||
#define WLED_MIN_VIRTUAL_BUSSES 3
|
||||
#else
|
||||
#define WLED_MAX_ANALOG_CHANNELS (LEDC_CHANNEL_MAX*LEDC_SPEED_MODE_MAX)
|
||||
#if defined(CONFIG_IDF_TARGET_ESP32C3) // 2 RMT, 6 LEDC, only has 1 I2S but NPB does not support it ATM
|
||||
#define WLED_MAX_BUSSES 6 // will allow 2 digital & 2 analog RGB or 6 PWM white
|
||||
#define WLED_MAX_DIGITAL_CHANNELS 2
|
||||
//#define WLED_MAX_ANALOG_CHANNELS 6
|
||||
#define WLED_MIN_VIRTUAL_BUSSES 3
|
||||
#define WLED_MIN_VIRTUAL_BUSSES 4
|
||||
#elif defined(CONFIG_IDF_TARGET_ESP32S2) // 4 RMT, 8 LEDC, only has 1 I2S bus, supported in NPB
|
||||
// the 5th bus (I2S) will prevent Audioreactive usermod from functioning (it is last used though)
|
||||
#define WLED_MAX_BUSSES 14 // will allow 12 digital & 2 analog RGB
|
||||
#define WLED_MAX_DIGITAL_CHANNELS 12 // x4 RMT + x1/x8 I2S0
|
||||
//#define WLED_MAX_ANALOG_CHANNELS 8
|
||||
#define WLED_MIN_VIRTUAL_BUSSES 3
|
||||
#define WLED_MIN_VIRTUAL_BUSSES 4
|
||||
#elif defined(CONFIG_IDF_TARGET_ESP32S3) // 4 RMT, 8 LEDC, has 2 I2S but NPB supports parallel x8 LCD on I2S1
|
||||
#define WLED_MAX_BUSSES 14 // will allow 12 digital & 2 analog RGB
|
||||
#define WLED_MAX_DIGITAL_CHANNELS 12 // x4 RMT + x8 I2S-LCD
|
||||
//#define WLED_MAX_ANALOG_CHANNELS 8
|
||||
#define WLED_MIN_VIRTUAL_BUSSES 4
|
||||
#define WLED_MIN_VIRTUAL_BUSSES 6
|
||||
#else
|
||||
// the last digital bus (I2S0) will prevent Audioreactive usermod from functioning
|
||||
#define WLED_MAX_BUSSES 19 // will allow 16 digital & 3 analog RGB
|
||||
#define WLED_MAX_DIGITAL_CHANNELS 16 // x1/x8 I2S1 + x8 RMT
|
||||
//#define WLED_MAX_ANALOG_CHANNELS 16
|
||||
#define WLED_MIN_VIRTUAL_BUSSES 4
|
||||
#define WLED_MIN_VIRTUAL_BUSSES 6
|
||||
#endif
|
||||
#endif
|
||||
#else
|
||||
@@ -115,7 +115,7 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef ESP8266
|
||||
#if defined(ESP8266) || defined(CONFIG_IDF_TARGET_ESP32S2)
|
||||
#define WLED_MAX_COLOR_ORDER_MAPPINGS 5
|
||||
#else
|
||||
#define WLED_MAX_COLOR_ORDER_MAPPINGS 10
|
||||
@@ -125,7 +125,7 @@
|
||||
#undef WLED_MAX_LEDMAPS
|
||||
#endif
|
||||
#ifndef WLED_MAX_LEDMAPS
|
||||
#ifdef ESP8266
|
||||
#if defined(ESP8266) || defined(CONFIG_IDF_TARGET_ESP32S2)
|
||||
#define WLED_MAX_LEDMAPS 10
|
||||
#else
|
||||
#define WLED_MAX_LEDMAPS 16
|
||||
@@ -203,6 +203,8 @@
|
||||
#define USERMOD_ID_LD2410 52 //Usermod "usermod_ld2410.h"
|
||||
#define USERMOD_ID_POV_DISPLAY 53 //Usermod "usermod_pov_display.h"
|
||||
#define USERMOD_ID_PIXELS_DICE_TRAY 54 //Usermod "pixels_dice_tray.h"
|
||||
#define USERMOD_ID_DEEP_SLEEP 55 //Usermod "usermod_deep_sleep.h"
|
||||
#define USERMOD_ID_RF433 56 //Usermod "usermod_v2_RF433.h"
|
||||
|
||||
//Access point behavior
|
||||
#define AP_BEHAVIOR_BOOT_NO_CONN 0 //Open AP when no connection after boot
|
||||
@@ -248,6 +250,7 @@
|
||||
#define REALTIME_MODE_ARTNET 6
|
||||
#define REALTIME_MODE_TPM2NET 7
|
||||
#define REALTIME_MODE_DDP 8
|
||||
#define REALTIME_MODE_DMX 9
|
||||
|
||||
//realtime override modes
|
||||
#define REALTIME_OVERRIDE_NONE 0
|
||||
@@ -473,6 +476,8 @@
|
||||
#ifndef MAX_LEDS
|
||||
#ifdef ESP8266
|
||||
#define MAX_LEDS 1664 //can't rely on memory limit to limit this to 1600 LEDs
|
||||
#elif defined(CONFIG_IDF_TARGET_ESP32S2)
|
||||
#define MAX_LEDS 2048 //due to memory constraints
|
||||
#else
|
||||
#define MAX_LEDS 8192
|
||||
#endif
|
||||
@@ -482,7 +487,9 @@
|
||||
#ifdef ESP8266
|
||||
#define MAX_LED_MEMORY 4000
|
||||
#else
|
||||
#if defined(ARDUINO_ARCH_ESP32S2) || defined(ARDUINO_ARCH_ESP32C3)
|
||||
#if defined(ARDUINO_ARCH_ESP32S2)
|
||||
#define MAX_LED_MEMORY 16000
|
||||
#elif defined(ARDUINO_ARCH_ESP32C3)
|
||||
#define MAX_LED_MEMORY 32000
|
||||
#else
|
||||
#define MAX_LED_MEMORY 64000
|
||||
|
||||
@@ -42,8 +42,8 @@
|
||||
if (loc) d.Sf.action = getURL('/settings/leds');
|
||||
}
|
||||
function bLimits(b,v,p,m,l,o=5,d=2,a=6) {
|
||||
oMaxB = maxB = b; // maxB - max buses (can be changed if using ESP32 parallel I2S): 20 - ESP32, 14 - S3/S2, 6 - C3, 4 - 8266
|
||||
maxD = d; // maxD - max digital channels (can be changed if using ESP32 parallel I2S): 17 - ESP32, 12 - S3/S2, 2 - C3, 3 - 8266
|
||||
oMaxB = maxB = b; // maxB - max buses (can be changed if using ESP32 parallel I2S): 19 - ESP32, 14 - S3/S2, 6 - C3, 4 - 8266
|
||||
maxD = d; // maxD - max digital channels (can be changed if using ESP32 parallel I2S): 16 - ESP32, 12 - S3/S2, 2 - C3, 3 - 8266
|
||||
maxA = a; // maxA - max analog channels: 16 - ESP32, 8 - S3/S2, 6 - C3, 5 - 8266
|
||||
maxV = v; // maxV - min virtual buses: 4 - ESP32/S3, 3 - S2/C3, 2 - ESP8266
|
||||
maxPB = p; // maxPB - max LEDs per bus
|
||||
@@ -351,8 +351,8 @@
|
||||
else LC.style.color = d.ro_gpio.some((e)=>e==parseInt(LC.value)) ? "orange" : "#fff";
|
||||
}
|
||||
});
|
||||
const S2 = (oMaxB == 14) && (maxV == 3);
|
||||
const S3 = (oMaxB == 14) && (maxV == 4);
|
||||
const S2 = (oMaxB == 14) && (maxV == 4);
|
||||
const S3 = (oMaxB == 14) && (maxV == 6);
|
||||
if (oMaxB == 19 || S2 || S3) { // TODO: crude ESP32 & S2/S3 detection
|
||||
if (maxLC > 300 || dC <= 2) {
|
||||
d.Sf["PR"].checked = false;
|
||||
@@ -482,14 +482,13 @@ mA/LED: <select name="LAsel${s}" onchange="enLA(this,'${s}');UI();">
|
||||
}
|
||||
}
|
||||
});
|
||||
enLA(d.Sf["LAsel"+s],s); // update LED mA
|
||||
// disable inappropriate LED types
|
||||
let sel = d.getElementsByName("LT"+s)[0]
|
||||
if (i >= maxB || digitalB >= maxD) disable(sel,'option[data-type="D"]'); // NOTE: see isDig()
|
||||
if (i >= maxB || twopinB >= 1) disable(sel,'option[data-type="2P"]'); // NOTE: see isD2P()
|
||||
disable(sel,`option[data-type^="${'A'.repeat(maxA-analogB+1)}"]`); // NOTE: see isPWM()
|
||||
sel.selectedIndex = sel.querySelector('option:not(:disabled)').index;
|
||||
// initialize current limiter
|
||||
enLA(d.Sf["LAsel"+s],s);
|
||||
}
|
||||
if (n==-1) {
|
||||
o[--i].remove();--i;
|
||||
|
||||
@@ -151,6 +151,19 @@ Timeout: <input name="ET" type="number" min="1" max="65000" required> ms<br>
|
||||
Force max brightness: <input type="checkbox" name="FB"><br>
|
||||
Disable realtime gamma correction: <input type="checkbox" name="RG"><br>
|
||||
Realtime LED offset: <input name="WO" type="number" min="-255" max="255" required>
|
||||
<div id="dmxInput">
|
||||
<h4>Wired DMX Input Pins</h4>
|
||||
DMX RX: <input name="IDMR" type="number" min="-1" max="99">RO<br/>
|
||||
DMX TX: <input name="IDMT" type="number" min="-1" max="99">DI<br/>
|
||||
DMX Enable: <input name="IDME" type="number" min="-1" max="99">RE+DE<br/>
|
||||
DMX Port: <input name="IDMP" type="number" min="1" max="2"><br/>
|
||||
</div>
|
||||
<div id="dmxInputOff">
|
||||
<br><em style="color:darkorange">This firmware build does not include DMX Input support. <br></em>
|
||||
</div>
|
||||
<div id="dmxOnOff2">
|
||||
<br><em style="color:darkorange">This firmware build does not include DMX output support. <br></em>
|
||||
</div>
|
||||
<hr class="sml">
|
||||
<h3>Alexa Voice Assistant</h3>
|
||||
<div id="NoAlexa" class="hide">
|
||||
|
||||
280
wled00/dmx_input.cpp
Normal file
280
wled00/dmx_input.cpp
Normal file
@@ -0,0 +1,280 @@
|
||||
#include "wled.h"
|
||||
|
||||
#ifdef WLED_ENABLE_DMX_INPUT
|
||||
|
||||
#ifdef ESP8266
|
||||
#error DMX input is only supported on ESP32
|
||||
#endif
|
||||
|
||||
#include "dmx_input.h"
|
||||
#include <rdm/responder.h>
|
||||
|
||||
void rdmPersonalityChangedCb(dmx_port_t dmxPort, const rdm_header_t *header,
|
||||
void *context)
|
||||
{
|
||||
DMXInput *dmx = static_cast<DMXInput *>(context);
|
||||
|
||||
if (!dmx) {
|
||||
DEBUG_PRINTLN("DMX: Error: no context in rdmPersonalityChangedCb");
|
||||
return;
|
||||
}
|
||||
|
||||
if (header->cc == RDM_CC_SET_COMMAND_RESPONSE) {
|
||||
const uint8_t personality = dmx_get_current_personality(dmx->inputPortNum);
|
||||
DMXMode = std::min(DMX_MODE_PRESET, std::max(DMX_MODE_SINGLE_RGB, int(personality)));
|
||||
doSerializeConfig = true;
|
||||
DEBUG_PRINTF("DMX personality changed to to: %d\n", DMXMode);
|
||||
}
|
||||
}
|
||||
|
||||
void rdmAddressChangedCb(dmx_port_t dmxPort, const rdm_header_t *header,
|
||||
void *context)
|
||||
{
|
||||
DMXInput *dmx = static_cast<DMXInput *>(context);
|
||||
|
||||
if (!dmx) {
|
||||
DEBUG_PRINTLN("DMX: Error: no context in rdmAddressChangedCb");
|
||||
return;
|
||||
}
|
||||
|
||||
if (header->cc == RDM_CC_SET_COMMAND_RESPONSE) {
|
||||
const uint16_t addr = dmx_get_start_address(dmx->inputPortNum);
|
||||
DMXAddress = std::min(512, int(addr));
|
||||
doSerializeConfig = true;
|
||||
DEBUG_PRINTF("DMX start addr changed to: %d\n", DMXAddress);
|
||||
}
|
||||
}
|
||||
|
||||
static dmx_config_t createConfig()
|
||||
{
|
||||
dmx_config_t config;
|
||||
config.pd_size = 255;
|
||||
config.dmx_start_address = DMXAddress;
|
||||
config.model_id = 0;
|
||||
config.product_category = RDM_PRODUCT_CATEGORY_FIXTURE;
|
||||
config.software_version_id = VERSION;
|
||||
strcpy(config.device_label, "WLED_MM");
|
||||
|
||||
const std::string versionString = "WLED_V" + std::to_string(VERSION);
|
||||
strncpy(config.software_version_label, versionString.c_str(), 32);
|
||||
config.software_version_label[32] = '\0'; // zero termination in case versionString string was longer than 32 chars
|
||||
|
||||
config.personalities[0].description = "SINGLE_RGB";
|
||||
config.personalities[0].footprint = 3;
|
||||
config.personalities[1].description = "SINGLE_DRGB";
|
||||
config.personalities[1].footprint = 4;
|
||||
config.personalities[2].description = "EFFECT";
|
||||
config.personalities[2].footprint = 15;
|
||||
config.personalities[3].description = "MULTIPLE_RGB";
|
||||
config.personalities[3].footprint = std::min(512, int(strip.getLengthTotal()) * 3);
|
||||
config.personalities[4].description = "MULTIPLE_DRGB";
|
||||
config.personalities[4].footprint = std::min(512, int(strip.getLengthTotal()) * 3 + 1);
|
||||
config.personalities[5].description = "MULTIPLE_RGBW";
|
||||
config.personalities[5].footprint = std::min(512, int(strip.getLengthTotal()) * 4);
|
||||
config.personalities[6].description = "EFFECT_W";
|
||||
config.personalities[6].footprint = 18;
|
||||
config.personalities[7].description = "EFFECT_SEGMENT";
|
||||
config.personalities[7].footprint = std::min(512, strip.getSegmentsNum() * 15);
|
||||
config.personalities[8].description = "EFFECT_SEGMENT_W";
|
||||
config.personalities[8].footprint = std::min(512, strip.getSegmentsNum() * 18);
|
||||
config.personalities[9].description = "PRESET";
|
||||
config.personalities[9].footprint = 1;
|
||||
|
||||
config.personality_count = 10;
|
||||
// rdm personalities are numbered from 1, thus we can just set the DMXMode directly.
|
||||
config.current_personality = DMXMode;
|
||||
|
||||
return config;
|
||||
}
|
||||
|
||||
void dmxReceiverTask(void *context)
|
||||
{
|
||||
DMXInput *instance = static_cast<DMXInput *>(context);
|
||||
if (instance == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (instance->installDriver()) {
|
||||
while (true) {
|
||||
instance->updateInternal();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool DMXInput::installDriver()
|
||||
{
|
||||
|
||||
const auto config = createConfig();
|
||||
DEBUG_PRINTF("DMX port: %u\n", inputPortNum);
|
||||
if (!dmx_driver_install(inputPortNum, &config, DMX_INTR_FLAGS_DEFAULT)) {
|
||||
DEBUG_PRINTF("Error: Failed to install dmx driver\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
DEBUG_PRINTF("Listening for DMX on pin %u\n", rxPin);
|
||||
DEBUG_PRINTF("Sending DMX on pin %u\n", txPin);
|
||||
DEBUG_PRINTF("DMX enable pin is: %u\n", enPin);
|
||||
dmx_set_pin(inputPortNum, txPin, rxPin, enPin);
|
||||
|
||||
rdm_register_dmx_start_address(inputPortNum, rdmAddressChangedCb, this);
|
||||
rdm_register_dmx_personality(inputPortNum, rdmPersonalityChangedCb, this);
|
||||
initialized = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
void DMXInput::init(uint8_t rxPin, uint8_t txPin, uint8_t enPin, uint8_t inputPortNum)
|
||||
{
|
||||
|
||||
#ifdef WLED_ENABLE_DMX_OUTPUT
|
||||
//TODO add again once dmx output has been merged
|
||||
// if(inputPortNum == dmxOutputPort)
|
||||
// {
|
||||
// DEBUG_PRINTF("DMXInput: Error: Input port == output port");
|
||||
// return;
|
||||
// }
|
||||
#endif
|
||||
|
||||
if (inputPortNum <= (SOC_UART_NUM - 1) && inputPortNum > 0) {
|
||||
this->inputPortNum = inputPortNum;
|
||||
}
|
||||
else {
|
||||
DEBUG_PRINTF("DMXInput: Error: invalid inputPortNum: %d\n", inputPortNum);
|
||||
return;
|
||||
}
|
||||
|
||||
if (rxPin > 0 && enPin > 0 && txPin > 0) {
|
||||
|
||||
const managed_pin_type pins[] = {
|
||||
{(int8_t)txPin, false}, // these are not used as gpio pins, thus isOutput is always false.
|
||||
{(int8_t)rxPin, false},
|
||||
{(int8_t)enPin, false}};
|
||||
const bool pinsAllocated = PinManager::allocateMultiplePins(pins, 3, PinOwner::DMX_INPUT);
|
||||
if (!pinsAllocated) {
|
||||
DEBUG_PRINTF("DMXInput: Error: Failed to allocate pins for DMX_INPUT. Pins already in use:\n");
|
||||
DEBUG_PRINTF("rx in use by: %s\n", pinManager.getPinOwnerText(rxPin).c_str());
|
||||
DEBUG_PRINTF("tx in use by: %s\n", pinManager.getPinOwnerText(txPin).c_str());
|
||||
DEBUG_PRINTF("en in use by: %s\n", pinManager.getPinOwnerText(enPin).c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
this->rxPin = rxPin;
|
||||
this->txPin = txPin;
|
||||
this->enPin = enPin;
|
||||
|
||||
// put dmx receiver into seperate task because it should not be blocked
|
||||
// pin to core 0 because wled is running on core 1
|
||||
xTaskCreatePinnedToCore(dmxReceiverTask, "DMX_RCV_TASK", 10240, this, 2, &task, 0);
|
||||
if (!task) {
|
||||
DEBUG_PRINTF("Error: Failed to create dmx rcv task");
|
||||
}
|
||||
}
|
||||
else {
|
||||
DEBUG_PRINTLN("DMX input disabled due to rxPin, enPin or txPin not set");
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
void DMXInput::updateInternal()
|
||||
{
|
||||
if (!initialized) {
|
||||
return;
|
||||
}
|
||||
|
||||
checkAndUpdateConfig();
|
||||
|
||||
dmx_packet_t packet;
|
||||
unsigned long now = millis();
|
||||
if (dmx_receive(inputPortNum, &packet, DMX_TIMEOUT_TICK)) {
|
||||
if (!packet.err) {
|
||||
if(!connected) {
|
||||
DEBUG_PRINTLN("DMX Input - connected");
|
||||
}
|
||||
connected = true;
|
||||
identify = isIdentifyOn();
|
||||
if (!packet.is_rdm) {
|
||||
const std::lock_guard<std::mutex> lock(dmxDataLock);
|
||||
dmx_read(inputPortNum, dmxdata, packet.size);
|
||||
}
|
||||
}
|
||||
else {
|
||||
connected = false;
|
||||
}
|
||||
}
|
||||
else {
|
||||
if(connected) {
|
||||
DEBUG_PRINTLN("DMX Input - disconnected");
|
||||
}
|
||||
connected = false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void DMXInput::update()
|
||||
{
|
||||
if (identify) {
|
||||
turnOnAllLeds();
|
||||
}
|
||||
else if (connected) {
|
||||
const std::lock_guard<std::mutex> lock(dmxDataLock);
|
||||
handleDMXData(1, 512, dmxdata, REALTIME_MODE_DMX, 0);
|
||||
}
|
||||
}
|
||||
|
||||
void DMXInput::turnOnAllLeds()
|
||||
{
|
||||
// TODO not sure if this is the correct way?
|
||||
const uint16_t numPixels = strip.getLengthTotal();
|
||||
for (uint16_t i = 0; i < numPixels; ++i)
|
||||
{
|
||||
strip.setPixelColor(i, 255, 255, 255, 255);
|
||||
}
|
||||
strip.setBrightness(255, true);
|
||||
strip.show();
|
||||
}
|
||||
|
||||
void DMXInput::disable()
|
||||
{
|
||||
if (initialized) {
|
||||
dmx_driver_disable(inputPortNum);
|
||||
}
|
||||
}
|
||||
void DMXInput::enable()
|
||||
{
|
||||
if (initialized) {
|
||||
dmx_driver_enable(inputPortNum);
|
||||
}
|
||||
}
|
||||
|
||||
bool DMXInput::isIdentifyOn() const
|
||||
{
|
||||
|
||||
uint8_t identify = 0;
|
||||
const bool gotIdentify = rdm_get_identify_device(inputPortNum, &identify);
|
||||
// gotIdentify should never be false because it is a default parameter in rdm
|
||||
// but just in case we check for it anyway
|
||||
return bool(identify) && gotIdentify;
|
||||
}
|
||||
|
||||
void DMXInput::checkAndUpdateConfig()
|
||||
{
|
||||
|
||||
/**
|
||||
* The global configuration variables are modified by the web interface.
|
||||
* If they differ from the driver configuration, we have to update the driver
|
||||
* configuration.
|
||||
*/
|
||||
|
||||
const uint8_t currentPersonality = dmx_get_current_personality(inputPortNum);
|
||||
if (currentPersonality != DMXMode) {
|
||||
DEBUG_PRINTF("DMX personality has changed from %d to %d\n", currentPersonality, DMXMode);
|
||||
dmx_set_current_personality(inputPortNum, DMXMode);
|
||||
}
|
||||
|
||||
const uint16_t currentAddr = dmx_get_start_address(inputPortNum);
|
||||
if (currentAddr != DMXAddress) {
|
||||
DEBUG_PRINTF("DMX address has changed from %d to %d\n", currentAddr, DMXAddress);
|
||||
dmx_set_start_address(inputPortNum, DMXAddress);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
73
wled00/dmx_input.h
Normal file
73
wled00/dmx_input.h
Normal file
@@ -0,0 +1,73 @@
|
||||
#pragma once
|
||||
#include <cstdint>
|
||||
#include <esp_dmx.h>
|
||||
#include <atomic>
|
||||
#include <mutex>
|
||||
|
||||
/*
|
||||
* Support for DMX/RDM input via serial (e.g. max485) on ESP32
|
||||
* ESP32 Library from:
|
||||
* https://github.com/someweisguy/esp_dmx
|
||||
*/
|
||||
class DMXInput
|
||||
{
|
||||
public:
|
||||
void init(uint8_t rxPin, uint8_t txPin, uint8_t enPin, uint8_t inputPortNum);
|
||||
void update();
|
||||
|
||||
/**disable dmx receiver (do this before disabling the cache)*/
|
||||
void disable();
|
||||
void enable();
|
||||
|
||||
private:
|
||||
/// @return true if rdm identify is active
|
||||
bool isIdentifyOn() const;
|
||||
|
||||
/**
|
||||
* Checks if the global dmx config has changed and updates the changes in rdm
|
||||
*/
|
||||
void checkAndUpdateConfig();
|
||||
|
||||
/// overrides everything and turns on all leds
|
||||
void turnOnAllLeds();
|
||||
|
||||
/// installs the dmx driver
|
||||
/// @return false on fail
|
||||
bool installDriver();
|
||||
|
||||
/// is called by the dmx receive task regularly to receive new dmx data
|
||||
void updateInternal();
|
||||
|
||||
// is invoked whenver the dmx start address is changed via rdm
|
||||
friend void rdmAddressChangedCb(dmx_port_t dmxPort, const rdm_header_t *header,
|
||||
void *context);
|
||||
|
||||
// is invoked whenever the personality is changed via rdm
|
||||
friend void rdmPersonalityChangedCb(dmx_port_t dmxPort, const rdm_header_t *header,
|
||||
void *context);
|
||||
|
||||
/// The internal dmx task.
|
||||
/// This is the main loop of the dmx receiver. It never returns.
|
||||
friend void dmxReceiverTask(void * context);
|
||||
|
||||
uint8_t inputPortNum = 255;
|
||||
uint8_t rxPin = 255;
|
||||
uint8_t txPin = 255;
|
||||
uint8_t enPin = 255;
|
||||
|
||||
/// is written to by the dmx receive task.
|
||||
byte dmxdata[DMX_PACKET_SIZE];
|
||||
/// True once the dmx input has been initialized successfully
|
||||
bool initialized = false; // true once init finished successfully
|
||||
/// True if dmx is currently connected
|
||||
std::atomic<bool> connected{false};
|
||||
std::atomic<bool> identify{false};
|
||||
/// Timestamp of the last time a dmx frame was received
|
||||
unsigned long lastUpdate = 0;
|
||||
|
||||
/// Taskhandle of the dmx task that is running in the background
|
||||
TaskHandle_t task;
|
||||
/// Guards access to dmxData
|
||||
std::mutex dmxDataLock;
|
||||
|
||||
};
|
||||
@@ -1,7 +1,7 @@
|
||||
#include "wled.h"
|
||||
|
||||
/*
|
||||
* Support for DMX Output via MAX485.
|
||||
* Support for DMX output via serial (e.g. MAX485).
|
||||
* Change the output pin in src/dependencies/ESPDMX.cpp, if needed (ESP8266)
|
||||
* Change the output pin in src/dependencies/SparkFunDMX.cpp, if needed (ESP32)
|
||||
* ESP8266 Library from:
|
||||
@@ -12,7 +12,7 @@
|
||||
|
||||
#ifdef WLED_ENABLE_DMX
|
||||
|
||||
void handleDMX()
|
||||
void handleDMXOutput()
|
||||
{
|
||||
// don't act, when in DMX Proxy mode
|
||||
if (e131ProxyUniverse != 0) return;
|
||||
@@ -68,11 +68,14 @@ void handleDMX()
|
||||
dmx.update(); // update the DMX bus
|
||||
}
|
||||
|
||||
void initDMX() {
|
||||
void initDMXOutput() {
|
||||
#if defined(ESP8266) || defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32S2)
|
||||
dmx.init(512); // initialize with bus length
|
||||
#else
|
||||
dmx.initWrite(512); // initialize with bus length
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
void initDMXOutput(){}
|
||||
void handleDMXOutput() {}
|
||||
#endif
|
||||
@@ -116,6 +116,11 @@ void handleE131Packet(e131_packet_t* p, IPAddress clientIP, byte protocol){
|
||||
|
||||
// update status info
|
||||
realtimeIP = clientIP;
|
||||
|
||||
handleDMXData(uni, dmxChannels, e131_data, mde, previousUniverses);
|
||||
}
|
||||
|
||||
void handleDMXData(uint16_t uni, uint16_t dmxChannels, uint8_t* e131_data, uint8_t mde, uint8_t previousUniverses) {
|
||||
byte wChannel = 0;
|
||||
unsigned totalLen = strip.getLengthTotal();
|
||||
unsigned availDMXLen = 0;
|
||||
@@ -130,7 +135,7 @@ void handleE131Packet(e131_packet_t* p, IPAddress clientIP, byte protocol){
|
||||
}
|
||||
|
||||
// DMX data in Art-Net packet starts at index 0, for E1.31 at index 1
|
||||
if (protocol == P_ARTNET && dataOffset > 0) {
|
||||
if (mde == REALTIME_MODE_ARTNET && dataOffset > 0) {
|
||||
dataOffset--;
|
||||
}
|
||||
|
||||
@@ -211,7 +216,7 @@ void handleE131Packet(e131_packet_t* p, IPAddress clientIP, byte protocol){
|
||||
else
|
||||
dataOffset = DMXAddress;
|
||||
// Modify address for Art-Net data
|
||||
if (protocol == P_ARTNET && dataOffset > 0)
|
||||
if (mde == REALTIME_MODE_ARTNET && dataOffset > 0)
|
||||
dataOffset--;
|
||||
// Skip out of universe addresses
|
||||
if (dataOffset > dmxChannels - dmxEffectChannels + 1)
|
||||
@@ -285,7 +290,7 @@ void handleE131Packet(e131_packet_t* p, IPAddress clientIP, byte protocol){
|
||||
}
|
||||
} else {
|
||||
// All subsequent universes start at the first channel.
|
||||
dmxOffset = (protocol == P_ARTNET) ? 0 : 1;
|
||||
dmxOffset = (mde == REALTIME_MODE_ARTNET) ? 0 : 1;
|
||||
const unsigned dimmerOffset = (DMXMode == DMX_MODE_MULTIPLE_DRGB) ? 1 : 0;
|
||||
unsigned ledsInFirstUniverse = (((MAX_CHANNELS_PER_UNIVERSE - DMXAddress) + dmxLenOffset) - dimmerOffset) / dmxChannelsPerLed;
|
||||
previousLeds = ledsInFirstUniverse + (previousUniverses - 1) * ledsPerUniverse;
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
#pragma once
|
||||
#ifndef WLED_FCN_DECLARE_H
|
||||
#define WLED_FCN_DECLARE_H
|
||||
|
||||
@@ -161,12 +162,12 @@ class NeoGammaWLEDMethod {
|
||||
};
|
||||
#define gamma32(c) NeoGammaWLEDMethod::Correct32(c)
|
||||
#define gamma8(c) NeoGammaWLEDMethod::rawGamma8(c)
|
||||
[[gnu::hot]] uint32_t color_blend(uint32_t c1, uint32_t c2 , uint8_t blend);
|
||||
[[gnu::hot, gnu::pure]] uint32_t color_blend(uint32_t c1, uint32_t c2 , uint8_t blend);
|
||||
inline uint32_t color_blend16(uint32_t c1, uint32_t c2, uint16_t b) { return color_blend(c1, c2, b >> 8); };
|
||||
[[gnu::hot]] uint32_t color_add(uint32_t, uint32_t, bool preserveCR = false);
|
||||
[[gnu::hot]] uint32_t color_fade(uint32_t c1, uint8_t amount, bool video=false);
|
||||
[[gnu::hot]] uint32_t ColorFromPaletteWLED(const CRGBPalette16 &pal, unsigned index, uint8_t brightness = (uint8_t)255U, TBlendType blendType = LINEARBLEND);
|
||||
CRGBPalette16 generateHarmonicRandomPalette(CRGBPalette16 &basepalette);
|
||||
[[gnu::hot, gnu::pure]] uint32_t color_add(uint32_t, uint32_t, bool preserveCR = false);
|
||||
[[gnu::hot, gnu::pure]] uint32_t color_fade(uint32_t c1, uint8_t amount, bool video=false);
|
||||
[[gnu::hot, gnu::pure]] uint32_t ColorFromPaletteWLED(const CRGBPalette16 &pal, unsigned index, uint8_t brightness = (uint8_t)255U, TBlendType blendType = LINEARBLEND);
|
||||
CRGBPalette16 generateHarmonicRandomPalette(const CRGBPalette16 &basepalette);
|
||||
CRGBPalette16 generateRandomPalette();
|
||||
inline uint32_t colorFromRgbw(byte* rgbw) { return uint32_t((byte(rgbw[3]) << 24) | (byte(rgbw[0]) << 16) | (byte(rgbw[1]) << 8) | (byte(rgbw[2]))); }
|
||||
void hsv2rgb(const CHSV32& hsv, uint32_t& rgb);
|
||||
@@ -176,33 +177,38 @@ inline CHSV rgb2hsv(const CRGB c) { CHSV32 hsv; rgb2hsv((uint32_t((byte(c.r) <<
|
||||
void colorKtoRGB(uint16_t kelvin, byte* rgb);
|
||||
void colorCTtoRGB(uint16_t mired, byte* rgb); //white spectrum to rgb
|
||||
void colorXYtoRGB(float x, float y, byte* rgb); // only defined if huesync disabled TODO
|
||||
void colorRGBtoXY(byte* rgb, float* xy); // only defined if huesync disabled TODO
|
||||
void colorFromDecOrHexString(byte* rgb, char* in);
|
||||
void colorRGBtoXY(const byte* rgb, float* xy); // only defined if huesync disabled TODO
|
||||
void colorFromDecOrHexString(byte* rgb, const char* in);
|
||||
bool colorFromHexString(byte* rgb, const char* in);
|
||||
uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
|
||||
uint16_t approximateKelvinFromRGB(uint32_t rgb);
|
||||
void setRandomColor(byte* rgb);
|
||||
|
||||
//dmx.cpp
|
||||
void initDMX();
|
||||
void handleDMX();
|
||||
//dmx_output.cpp
|
||||
void initDMXOutput();
|
||||
void handleDMXOutput();
|
||||
|
||||
//dmx_input.cpp
|
||||
void initDMXInput();
|
||||
void handleDMXInput();
|
||||
|
||||
//e131.cpp
|
||||
void handleE131Packet(e131_packet_t* p, IPAddress clientIP, byte protocol);
|
||||
void handleDMXData(uint16_t uni, uint16_t dmxChannels, uint8_t* e131_data, uint8_t mde, uint8_t previousUniverses);
|
||||
void handleArtnetPollReply(IPAddress ipAddress);
|
||||
void prepareArtnetPollReply(ArtPollReply* reply);
|
||||
void sendArtnetPollReply(ArtPollReply* reply, IPAddress ipAddress, uint16_t portAddress);
|
||||
|
||||
//file.cpp
|
||||
bool handleFileRead(AsyncWebServerRequest*, String path);
|
||||
bool writeObjectToFileUsingId(const char* file, uint16_t id, JsonDocument* content);
|
||||
bool writeObjectToFile(const char* file, const char* key, JsonDocument* content);
|
||||
bool writeObjectToFileUsingId(const char* file, uint16_t id, const JsonDocument* content);
|
||||
bool writeObjectToFile(const char* file, const char* key, const JsonDocument* content);
|
||||
bool readObjectFromFileUsingId(const char* file, uint16_t id, JsonDocument* dest);
|
||||
bool readObjectFromFile(const char* file, const char* key, JsonDocument* dest);
|
||||
void updateFSInfo();
|
||||
void closeFile();
|
||||
inline bool writeObjectToFileUsingId(const String &file, uint16_t id, JsonDocument* content) { return writeObjectToFileUsingId(file.c_str(), id, content); };
|
||||
inline bool writeObjectToFile(const String &file, const char* key, JsonDocument* content) { return writeObjectToFile(file.c_str(), key, content); };
|
||||
inline bool writeObjectToFileUsingId(const String &file, uint16_t id, const JsonDocument* content) { return writeObjectToFileUsingId(file.c_str(), id, content); };
|
||||
inline bool writeObjectToFile(const String &file, const char* key, const JsonDocument* content) { return writeObjectToFile(file.c_str(), key, content); };
|
||||
inline bool readObjectFromFileUsingId(const String &file, uint16_t id, JsonDocument* dest) { return readObjectFromFileUsingId(file.c_str(), id, dest); };
|
||||
inline bool readObjectFromFile(const String &file, const char* key, JsonDocument* dest) { return readObjectFromFile(file.c_str(), key, dest); };
|
||||
|
||||
@@ -243,11 +249,11 @@ void handleIR();
|
||||
|
||||
bool deserializeSegment(JsonObject elem, byte it, byte presetId = 0);
|
||||
bool deserializeState(JsonObject root, byte callMode = CALL_MODE_DIRECT_CHANGE, byte presetId = 0);
|
||||
void serializeSegment(JsonObject& root, Segment& seg, byte id, bool forPreset = false, bool segmentBounds = true);
|
||||
void serializeSegment(const JsonObject& root, const Segment& seg, byte id, bool forPreset = false, bool segmentBounds = true);
|
||||
void serializeState(JsonObject root, bool forPreset = false, bool includeBri = true, bool segmentBounds = true, bool selectedSegmentsOnly = false);
|
||||
void serializeInfo(JsonObject root);
|
||||
void serializeModeNames(JsonArray root);
|
||||
void serializeModeData(JsonArray root);
|
||||
void serializeModeNames(JsonArray arr);
|
||||
void serializeModeData(JsonArray fxdata);
|
||||
void serveJson(AsyncWebServerRequest* request);
|
||||
#ifdef WLED_ENABLE_JSONLIVE
|
||||
bool serveLiveLeds(AsyncWebServerRequest* request, uint32_t wsClient = 0);
|
||||
@@ -318,7 +324,8 @@ void deletePreset(byte index);
|
||||
bool getPresetName(byte index, String& name);
|
||||
|
||||
//remote.cpp
|
||||
void handleRemote(uint8_t *data, size_t len);
|
||||
void handleWiZdata(uint8_t *incomingData, size_t len);
|
||||
void handleRemote();
|
||||
|
||||
//set.cpp
|
||||
bool isAsterisksOnly(const char* str, byte maxLen);
|
||||
@@ -327,7 +334,7 @@ bool handleSet(AsyncWebServerRequest *request, const String& req, bool apply=tru
|
||||
|
||||
//udp.cpp
|
||||
void notify(byte callMode, bool followUp=false);
|
||||
uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, uint8_t *buffer, uint8_t bri=255, bool isRGBW=false);
|
||||
uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, const uint8_t* buffer, uint8_t bri=255, bool isRGBW=false);
|
||||
void realtimeLock(uint32_t timeoutMs, byte md = REALTIME_MODE_GENERIC);
|
||||
void exitRealtime();
|
||||
void handleNotifications();
|
||||
@@ -417,36 +424,33 @@ class Usermod {
|
||||
#endif
|
||||
};
|
||||
|
||||
class UsermodManager {
|
||||
private:
|
||||
static Usermod* ums[WLED_MAX_USERMODS];
|
||||
static byte numMods;
|
||||
namespace UsermodManager {
|
||||
extern byte numMods;
|
||||
|
||||
public:
|
||||
static void loop();
|
||||
static void handleOverlayDraw();
|
||||
static bool handleButton(uint8_t b);
|
||||
static bool getUMData(um_data_t **um_data, uint8_t mod_id = USERMOD_ID_RESERVED); // USERMOD_ID_RESERVED will poll all usermods
|
||||
static void setup();
|
||||
static void connected();
|
||||
static void appendConfigData(Print&);
|
||||
static void addToJsonState(JsonObject& obj);
|
||||
static void addToJsonInfo(JsonObject& obj);
|
||||
static void readFromJsonState(JsonObject& obj);
|
||||
static void addToConfig(JsonObject& obj);
|
||||
static bool readFromConfig(JsonObject& obj);
|
||||
void loop();
|
||||
void handleOverlayDraw();
|
||||
bool handleButton(uint8_t b);
|
||||
bool getUMData(um_data_t **um_data, uint8_t mod_id = USERMOD_ID_RESERVED); // USERMOD_ID_RESERVED will poll all usermods
|
||||
void setup();
|
||||
void connected();
|
||||
void appendConfigData(Print&);
|
||||
void addToJsonState(JsonObject& obj);
|
||||
void addToJsonInfo(JsonObject& obj);
|
||||
void readFromJsonState(JsonObject& obj);
|
||||
void addToConfig(JsonObject& obj);
|
||||
bool readFromConfig(JsonObject& obj);
|
||||
#ifndef WLED_DISABLE_MQTT
|
||||
static void onMqttConnect(bool sessionPresent);
|
||||
static bool onMqttMessage(char* topic, char* payload);
|
||||
void onMqttConnect(bool sessionPresent);
|
||||
bool onMqttMessage(char* topic, char* payload);
|
||||
#endif
|
||||
#ifndef WLED_DISABLE_ESPNOW
|
||||
static bool onEspNowMessage(uint8_t* sender, uint8_t* payload, uint8_t len);
|
||||
bool onEspNowMessage(uint8_t* sender, uint8_t* payload, uint8_t len);
|
||||
#endif
|
||||
static void onUpdateBegin(bool);
|
||||
static void onStateChange(uint8_t);
|
||||
static bool add(Usermod* um);
|
||||
static Usermod* lookup(uint16_t mod_id);
|
||||
static inline byte getModCount() {return numMods;};
|
||||
void onUpdateBegin(bool);
|
||||
void onStateChange(uint8_t);
|
||||
bool add(Usermod* um);
|
||||
Usermod* lookup(uint16_t mod_id);
|
||||
inline byte getModCount() {return numMods;};
|
||||
};
|
||||
|
||||
//usermods_list.cpp
|
||||
@@ -464,10 +468,10 @@ void userLoop();
|
||||
#include "soc/wdev_reg.h"
|
||||
#define HW_RND_REGISTER REG_READ(WDEV_RND_REG)
|
||||
#endif
|
||||
int getNumVal(const String* req, uint16_t pos);
|
||||
[[gnu::pure]] int getNumVal(const String* req, uint16_t pos);
|
||||
void parseNumber(const char* str, byte* val, byte minv=0, byte maxv=255);
|
||||
bool getVal(JsonVariant elem, byte* val, byte minv=0, byte maxv=255); // getVal supports inc/decrementing and random ("X~Y(r|~[w][-][Z])" form)
|
||||
bool getBoolVal(JsonVariant elem, bool dflt);
|
||||
bool getVal(JsonVariant elem, byte* val, byte vmin=0, byte vmax=255); // getVal supports inc/decrementing and random ("X~Y(r|[w]~[-][Z])" form)
|
||||
[[gnu::pure]] bool getBoolVal(const JsonVariant &elem, bool dflt);
|
||||
bool updateVal(const char* req, const char* key, byte* val, byte minv=0, byte maxv=255);
|
||||
size_t printSetFormCheckbox(Print& settingsScript, const char* key, int val);
|
||||
size_t printSetFormValue(Print& settingsScript, const char* key, int val);
|
||||
@@ -475,8 +479,8 @@ size_t printSetFormValue(Print& settingsScript, const char* key, const char* val
|
||||
size_t printSetFormIndex(Print& settingsScript, const char* key, int index);
|
||||
size_t printSetClassElementHTML(Print& settingsScript, const char* key, const int index, const char* val);
|
||||
void prepareHostname(char* hostname);
|
||||
bool isAsterisksOnly(const char* str, byte maxLen);
|
||||
bool requestJSONBufferLock(uint8_t module=255);
|
||||
[[gnu::pure]] bool isAsterisksOnly(const char* str, byte maxLen);
|
||||
bool requestJSONBufferLock(uint8_t moduleID=255);
|
||||
void releaseJSONBufferLock();
|
||||
uint8_t extractModeName(uint8_t mode, const char *src, char *dest, uint8_t maxLen);
|
||||
uint8_t extractModeSlider(uint8_t mode, uint8_t slider, char *dest, uint8_t maxLen, uint8_t *var = nullptr);
|
||||
@@ -488,8 +492,8 @@ uint16_t beatsin16_t(accum88 beats_per_minute, uint16_t lowest = 0, uint16_t hig
|
||||
uint8_t beatsin8_t(accum88 beats_per_minute, uint8_t lowest = 0, uint8_t highest = 255, uint32_t timebase = 0, uint8_t phase_offset = 0);
|
||||
um_data_t* simulateSound(uint8_t simulationId);
|
||||
void enumerateLedmaps();
|
||||
uint8_t get_random_wheel_index(uint8_t pos);
|
||||
float mapf(float x, float in_min, float in_max, float out_min, float out_max);
|
||||
[[gnu::hot]] uint8_t get_random_wheel_index(uint8_t pos);
|
||||
[[gnu::hot, gnu::pure]] float mapf(float x, float in_min, float in_max, float out_min, float out_max);
|
||||
|
||||
// fast (true) random numbers using hardware RNG, all functions return values in the range lowerlimit to upperlimit-1
|
||||
// note: for true random numbers with high entropy, do not call faster than every 200ns (5MHz)
|
||||
|
||||
@@ -176,7 +176,7 @@ static void writeSpace(size_t l)
|
||||
if (knownLargestSpace < l) knownLargestSpace = l;
|
||||
}
|
||||
|
||||
bool appendObjectToFile(const char* key, JsonDocument* content, uint32_t s, uint32_t contentLen = 0)
|
||||
static bool appendObjectToFile(const char* key, const JsonDocument* content, uint32_t s, uint32_t contentLen = 0)
|
||||
{
|
||||
#ifdef WLED_DEBUG_FS
|
||||
DEBUGFS_PRINTLN(F("Append"));
|
||||
@@ -255,14 +255,14 @@ bool appendObjectToFile(const char* key, JsonDocument* content, uint32_t s, uint
|
||||
return true;
|
||||
}
|
||||
|
||||
bool writeObjectToFileUsingId(const char* file, uint16_t id, JsonDocument* content)
|
||||
bool writeObjectToFileUsingId(const char* file, uint16_t id, const JsonDocument* content)
|
||||
{
|
||||
char objKey[10];
|
||||
sprintf(objKey, "\"%d\":", id);
|
||||
return writeObjectToFile(file, objKey, content);
|
||||
}
|
||||
|
||||
bool writeObjectToFile(const char* file, const char* key, JsonDocument* content)
|
||||
bool writeObjectToFile(const char* file, const char* key, const JsonDocument* content)
|
||||
{
|
||||
uint32_t s = 0; //timing
|
||||
#ifdef WLED_DEBUG_FS
|
||||
|
||||
@@ -68,7 +68,7 @@ bool deserializeSegment(JsonObject elem, byte it, byte presetId)
|
||||
if (elem["n"]) {
|
||||
// name field exists
|
||||
if (seg.name) { //clear old name
|
||||
delete[] seg.name;
|
||||
free(seg.name);
|
||||
seg.name = nullptr;
|
||||
}
|
||||
|
||||
@@ -77,7 +77,7 @@ bool deserializeSegment(JsonObject elem, byte it, byte presetId)
|
||||
if (name != nullptr) len = strlen(name);
|
||||
if (len > 0) {
|
||||
if (len > WLED_MAX_SEGNAME_LEN) len = WLED_MAX_SEGNAME_LEN;
|
||||
seg.name = new char[len+1];
|
||||
seg.name = static_cast<char*>(malloc(len+1));
|
||||
if (seg.name) strlcpy(seg.name, name, WLED_MAX_SEGNAME_LEN+1);
|
||||
} else {
|
||||
// but is empty (already deleted above)
|
||||
@@ -86,7 +86,7 @@ bool deserializeSegment(JsonObject elem, byte it, byte presetId)
|
||||
} else if (start != seg.start || stop != seg.stop) {
|
||||
// clearing or setting segment without name field
|
||||
if (seg.name) {
|
||||
delete[] seg.name;
|
||||
free(seg.name);
|
||||
seg.name = nullptr;
|
||||
}
|
||||
}
|
||||
@@ -493,7 +493,7 @@ bool deserializeState(JsonObject root, byte callMode, byte presetId)
|
||||
return stateResponse;
|
||||
}
|
||||
|
||||
void serializeSegment(JsonObject& root, Segment& seg, byte id, bool forPreset, bool segmentBounds)
|
||||
void serializeSegment(const JsonObject& root, const Segment& seg, byte id, bool forPreset, bool segmentBounds)
|
||||
{
|
||||
root["id"] = id;
|
||||
if (segmentBounds) {
|
||||
|
||||
@@ -73,8 +73,7 @@ byte scaledBri(byte in)
|
||||
|
||||
//applies global brightness
|
||||
void applyBri() {
|
||||
if (!realtimeMode || !arlsForceMaxBri)
|
||||
{
|
||||
if (!(realtimeMode && arlsForceMaxBri)) {
|
||||
//DEBUG_PRINTF_P(PSTR("Applying strip brightness: %d (%d,%d)\n"), (int)briT, (int)bri, (int)briOld);
|
||||
strip.setBrightness(scaledBri(briT));
|
||||
}
|
||||
@@ -86,6 +85,7 @@ void applyFinalBri() {
|
||||
briOld = bri;
|
||||
briT = bri;
|
||||
applyBri();
|
||||
strip.trigger();
|
||||
}
|
||||
|
||||
|
||||
@@ -146,7 +146,6 @@ void stateUpdated(byte callMode) {
|
||||
transitionStartTime = millis();
|
||||
} else {
|
||||
applyFinalBri();
|
||||
strip.trigger();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -22,7 +22,7 @@ bool parseLx(int lxValue, byte* rgbw)
|
||||
} else if ((lxValue >= 200000000) && (lxValue <= 201006500)) {
|
||||
// Loxone Lumitech
|
||||
ok = true;
|
||||
float tmpBri = floor((lxValue - 200000000) / 10000); ;
|
||||
float tmpBri = floor((lxValue - 200000000) / 10000);
|
||||
uint16_t ct = (lxValue - 200000000) - (((uint8_t)tmpBri) * 10000);
|
||||
|
||||
tmpBri *= 2.55f;
|
||||
|
||||
@@ -7,6 +7,10 @@
|
||||
#ifndef WLED_DISABLE_MQTT
|
||||
#define MQTT_KEEP_ALIVE_TIME 60 // contact the MQTT broker every 60 seconds
|
||||
|
||||
#if MQTT_MAX_TOPIC_LEN > 32
|
||||
#warning "MQTT topics length > 32 is not recommended for compatibility with usermods!"
|
||||
#endif
|
||||
|
||||
static void parseMQTTBriPayload(char* payload)
|
||||
{
|
||||
if (strstr(payload, "ON") || strstr(payload, "on") || strstr(payload, "true")) {bri = briLast; stateUpdated(CALL_MODE_DIRECT_CHANGE);}
|
||||
@@ -23,24 +27,24 @@ static void parseMQTTBriPayload(char* payload)
|
||||
static void onMqttConnect(bool sessionPresent)
|
||||
{
|
||||
//(re)subscribe to required topics
|
||||
char subuf[38];
|
||||
char subuf[MQTT_MAX_TOPIC_LEN + 6];
|
||||
|
||||
if (mqttDeviceTopic[0] != 0) {
|
||||
strlcpy(subuf, mqttDeviceTopic, 33);
|
||||
strlcpy(subuf, mqttDeviceTopic, MQTT_MAX_TOPIC_LEN + 1);
|
||||
mqtt->subscribe(subuf, 0);
|
||||
strcat_P(subuf, PSTR("/col"));
|
||||
mqtt->subscribe(subuf, 0);
|
||||
strlcpy(subuf, mqttDeviceTopic, 33);
|
||||
strlcpy(subuf, mqttDeviceTopic, MQTT_MAX_TOPIC_LEN + 1);
|
||||
strcat_P(subuf, PSTR("/api"));
|
||||
mqtt->subscribe(subuf, 0);
|
||||
}
|
||||
|
||||
if (mqttGroupTopic[0] != 0) {
|
||||
strlcpy(subuf, mqttGroupTopic, 33);
|
||||
strlcpy(subuf, mqttGroupTopic, MQTT_MAX_TOPIC_LEN + 1);
|
||||
mqtt->subscribe(subuf, 0);
|
||||
strcat_P(subuf, PSTR("/col"));
|
||||
mqtt->subscribe(subuf, 0);
|
||||
strlcpy(subuf, mqttGroupTopic, 33);
|
||||
strlcpy(subuf, mqttGroupTopic, MQTT_MAX_TOPIC_LEN + 1);
|
||||
strcat_P(subuf, PSTR("/api"));
|
||||
mqtt->subscribe(subuf, 0);
|
||||
}
|
||||
@@ -64,8 +68,8 @@ static void onMqttMessage(char* topic, char* payload, AsyncMqttClientMessageProp
|
||||
}
|
||||
|
||||
if (index == 0) { // start (1st partial packet or the only packet)
|
||||
if (payloadStr) delete[] payloadStr; // fail-safe: release buffer
|
||||
payloadStr = new char[total+1]; // allocate new buffer
|
||||
if (payloadStr) free(payloadStr); // fail-safe: release buffer
|
||||
payloadStr = static_cast<char*>(malloc(total+1)); // allocate new buffer
|
||||
}
|
||||
if (payloadStr == nullptr) return; // buffer not allocated
|
||||
|
||||
@@ -90,7 +94,7 @@ static void onMqttMessage(char* topic, char* payload, AsyncMqttClientMessageProp
|
||||
} else {
|
||||
// Non-Wled Topic used here. Probably a usermod subscribed to this topic.
|
||||
UsermodManager::onMqttMessage(topic, payloadStr);
|
||||
delete[] payloadStr;
|
||||
free(payloadStr);
|
||||
payloadStr = nullptr;
|
||||
return;
|
||||
}
|
||||
@@ -120,7 +124,7 @@ static void onMqttMessage(char* topic, char* payload, AsyncMqttClientMessageProp
|
||||
// topmost topic (just wled/MAC)
|
||||
parseMQTTBriPayload(payloadStr);
|
||||
}
|
||||
delete[] payloadStr;
|
||||
free(payloadStr);
|
||||
payloadStr = nullptr;
|
||||
}
|
||||
|
||||
@@ -158,19 +162,19 @@ void publishMqtt()
|
||||
|
||||
#ifndef USERMOD_SMARTNEST
|
||||
char s[10];
|
||||
char subuf[48];
|
||||
char subuf[MQTT_MAX_TOPIC_LEN + 16];
|
||||
|
||||
sprintf_P(s, PSTR("%u"), bri);
|
||||
strlcpy(subuf, mqttDeviceTopic, 33);
|
||||
strlcpy(subuf, mqttDeviceTopic, MQTT_MAX_TOPIC_LEN + 1);
|
||||
strcat_P(subuf, PSTR("/g"));
|
||||
mqtt->publish(subuf, 0, retainMqttMsg, s); // optionally retain message (#2263)
|
||||
|
||||
sprintf_P(s, PSTR("#%06X"), (col[3] << 24) | (col[0] << 16) | (col[1] << 8) | (col[2]));
|
||||
strlcpy(subuf, mqttDeviceTopic, 33);
|
||||
strlcpy(subuf, mqttDeviceTopic, MQTT_MAX_TOPIC_LEN + 1);
|
||||
strcat_P(subuf, PSTR("/c"));
|
||||
mqtt->publish(subuf, 0, retainMqttMsg, s); // optionally retain message (#2263)
|
||||
|
||||
strlcpy(subuf, mqttDeviceTopic, 33);
|
||||
strlcpy(subuf, mqttDeviceTopic, MQTT_MAX_TOPIC_LEN + 1);
|
||||
strcat_P(subuf, PSTR("/status"));
|
||||
mqtt->publish(subuf, 0, true, "online"); // retain message for a LWT
|
||||
|
||||
@@ -178,7 +182,7 @@ void publishMqtt()
|
||||
DynamicBuffer buf(1024);
|
||||
bufferPrint pbuf(buf.data(), buf.size());
|
||||
XML_response(pbuf);
|
||||
strlcpy(subuf, mqttDeviceTopic, 33);
|
||||
strlcpy(subuf, mqttDeviceTopic, MQTT_MAX_TOPIC_LEN + 1);
|
||||
strcat_P(subuf, PSTR("/v"));
|
||||
mqtt->publish(subuf, 0, retainMqttMsg, buf.data(), pbuf.size()); // optionally retain message (#2263)
|
||||
#endif
|
||||
@@ -211,7 +215,7 @@ bool initMqtt()
|
||||
if (mqttUser[0] && mqttPass[0]) mqtt->setCredentials(mqttUser, mqttPass);
|
||||
|
||||
#ifndef USERMOD_SMARTNEST
|
||||
strlcpy(mqttStatusTopic, mqttDeviceTopic, 33);
|
||||
strlcpy(mqttStatusTopic, mqttDeviceTopic, MQTT_MAX_TOPIC_LEN + 1);
|
||||
strcat_P(mqttStatusTopic, PSTR("/status"));
|
||||
mqtt->setWill(mqttStatusTopic, 0, true, "offline"); // LWT message
|
||||
#endif
|
||||
|
||||
@@ -224,7 +224,7 @@ void sendNTPPacket()
|
||||
ntpUdp.endPacket();
|
||||
}
|
||||
|
||||
static bool isValidNtpResponse(byte * ntpPacket) {
|
||||
static bool isValidNtpResponse(const byte* ntpPacket) {
|
||||
// Perform a few validity checks on the packet
|
||||
// based on https://github.com/taranais/NTPClient/blob/master/NTPClient.cpp
|
||||
if((ntpPacket[0] & 0b11000000) == 0b11000000) return false; //reject LI=UNSYNC
|
||||
|
||||
@@ -13,6 +13,16 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Pin management state variables
|
||||
#ifdef ESP8266
|
||||
static uint32_t pinAlloc = 0UL; // 1 bit per pin, we use first 17bits
|
||||
#else
|
||||
static uint64_t pinAlloc = 0ULL; // 1 bit per pin, we use 50 bits on ESP32-S3
|
||||
static uint16_t ledcAlloc = 0; // up to 16 LEDC channels (WLED_MAX_ANALOG_CHANNELS)
|
||||
#endif
|
||||
static uint8_t i2cAllocCount = 0; // allow multiple allocation of I2C bus pins but keep track of allocations
|
||||
static uint8_t spiAllocCount = 0; // allow multiple allocation of SPI bus pins but keep track of allocations
|
||||
static PinOwner ownerTag[WLED_NUM_PINS] = { PinOwner::None };
|
||||
|
||||
/// Actual allocation/deallocation routines
|
||||
bool PinManager::deallocatePin(byte gpio, PinOwner tag)
|
||||
@@ -131,7 +141,9 @@ bool PinManager::allocateMultiplePins(const managed_pin_type * mptArray, byte ar
|
||||
bool PinManager::allocatePin(byte gpio, bool output, PinOwner tag)
|
||||
{
|
||||
// HW I2C & SPI pins have to be allocated using allocateMultiplePins variant since there is always SCL/SDA pair
|
||||
if (!isPinOk(gpio, output) || (gpio >= WLED_NUM_PINS) || tag==PinOwner::HW_I2C || tag==PinOwner::HW_SPI) {
|
||||
// DMX_INPUT pins have to be allocated using allocateMultiplePins variant since there is always RX/TX/EN triple
|
||||
if (!isPinOk(gpio, output) || (gpio >= WLED_NUM_PINS) || tag==PinOwner::HW_I2C || tag==PinOwner::HW_SPI
|
||||
|| tag==PinOwner::DMX_INPUT) {
|
||||
#ifdef WLED_DEBUG
|
||||
if (gpio < 255) { // 255 (-1) is the "not defined GPIO"
|
||||
if (!isPinOk(gpio, output)) {
|
||||
@@ -214,8 +226,20 @@ bool PinManager::isPinOk(byte gpio, bool output)
|
||||
// JTAG: GPIO39-42 are usually used for inline debugging
|
||||
// GPIO46 is input only and pulled down
|
||||
#else
|
||||
if (gpio > 5 && gpio < 12) return false; //SPI flash pins
|
||||
if (strncmp_P(PSTR("ESP32-PICO"), ESP.getChipModel(), 10) == 0 && (gpio == 16 || gpio == 17)) return false; // PICO-D4: gpio16+17 are in use for onboard SPI FLASH
|
||||
|
||||
if ((strncmp_P(PSTR("ESP32-U4WDH"), ESP.getChipModel(), 11) == 0) || // this is the correct identifier, but....
|
||||
(strncmp_P(PSTR("ESP32-PICO-D2"), ESP.getChipModel(), 13) == 0)) { // https://github.com/espressif/arduino-esp32/issues/10683
|
||||
// this chip has 4 MB of internal Flash and different packaging, so available pins are different!
|
||||
if (((gpio > 5) && (gpio < 9)) || (gpio == 11))
|
||||
return false;
|
||||
} else {
|
||||
// for classic ESP32 (non-mini) modules, these are the SPI flash pins
|
||||
if (gpio > 5 && gpio < 12) return false; //SPI flash pins
|
||||
}
|
||||
|
||||
if (((strncmp_P(PSTR("ESP32-PICO"), ESP.getChipModel(), 10) == 0) ||
|
||||
(strncmp_P(PSTR("ESP32-U4WDH"), ESP.getChipModel(), 11) == 0))
|
||||
&& (gpio == 16 || gpio == 17)) return false; // PICO-D4/U4WDH: gpio16+17 are in use for onboard SPI FLASH
|
||||
if (gpio == 16 || gpio == 17) return !psramFound(); //PSRAM pins on ESP32 (these are IO)
|
||||
#endif
|
||||
if (output) return digitalPinCanOutput(gpio);
|
||||
@@ -278,13 +302,3 @@ void PinManager::deallocateLedc(byte pos, byte channels)
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef ESP8266
|
||||
uint32_t PinManager::pinAlloc = 0UL;
|
||||
#else
|
||||
uint64_t PinManager::pinAlloc = 0ULL;
|
||||
uint16_t PinManager::ledcAlloc = 0;
|
||||
#endif
|
||||
uint8_t PinManager::i2cAllocCount = 0;
|
||||
uint8_t PinManager::spiAllocCount = 0;
|
||||
PinOwner PinManager::ownerTag[WLED_NUM_PINS] = { PinOwner::None };
|
||||
|
||||
@@ -9,6 +9,12 @@
|
||||
#endif
|
||||
#include "const.h" // for USERMOD_* values
|
||||
|
||||
#ifdef ESP8266
|
||||
#define WLED_NUM_PINS (GPIO_PIN_COUNT+1) // somehow they forgot GPIO 16 (0-16==17)
|
||||
#else
|
||||
#define WLED_NUM_PINS (GPIO_PIN_COUNT)
|
||||
#endif
|
||||
|
||||
typedef struct PinManagerPinType {
|
||||
int8_t pin;
|
||||
bool isOutput;
|
||||
@@ -29,15 +35,16 @@ enum struct PinOwner : uint8_t {
|
||||
Ethernet = 0x81,
|
||||
BusDigital = 0x82,
|
||||
BusOnOff = 0x83,
|
||||
BusPwm = 0x84, // 'BusP' == PWM output using BusPwm
|
||||
Button = 0x85, // 'Butn' == button from configuration
|
||||
IR = 0x86, // 'IR' == IR receiver pin from configuration
|
||||
Relay = 0x87, // 'Rly' == Relay pin from configuration
|
||||
SPI_RAM = 0x88, // 'SpiR' == SPI RAM
|
||||
DebugOut = 0x89, // 'Dbg' == debug output always IO1
|
||||
DMX = 0x8A, // 'DMX' == hard-coded to IO2
|
||||
HW_I2C = 0x8B, // 'I2C' == hardware I2C pins (4&5 on ESP8266, 21&22 on ESP32)
|
||||
HW_SPI = 0x8C, // 'SPI' == hardware (V)SPI pins (13,14&15 on ESP8266, 5,18&23 on ESP32)
|
||||
BusPwm = 0x84, // 'BusP' == PWM output using BusPwm
|
||||
Button = 0x85, // 'Butn' == button from configuration
|
||||
IR = 0x86, // 'IR' == IR receiver pin from configuration
|
||||
Relay = 0x87, // 'Rly' == Relay pin from configuration
|
||||
SPI_RAM = 0x88, // 'SpiR' == SPI RAM
|
||||
DebugOut = 0x89, // 'Dbg' == debug output always IO1
|
||||
DMX = 0x8A, // 'DMX' == hard-coded to IO2
|
||||
HW_I2C = 0x8B, // 'I2C' == hardware I2C pins (4&5 on ESP8266, 21&22 on ESP32)
|
||||
HW_SPI = 0x8C, // 'SPI' == hardware (V)SPI pins (13,14&15 on ESP8266, 5,18&23 on ESP32)
|
||||
DMX_INPUT = 0x8D, // 'DMX_INPUT' == DMX input via serial
|
||||
// Use UserMod IDs from const.h here
|
||||
UM_Unspecified = USERMOD_ID_UNSPECIFIED, // 0x01
|
||||
UM_Example = USERMOD_ID_EXAMPLE, // 0x02 // Usermod "usermod_v2_example.h"
|
||||
@@ -70,53 +77,39 @@ enum struct PinOwner : uint8_t {
|
||||
};
|
||||
static_assert(0u == static_cast<uint8_t>(PinOwner::None), "PinOwner::None must be zero, so default array initialization works as expected");
|
||||
|
||||
class PinManager {
|
||||
private:
|
||||
#ifdef ESP8266
|
||||
#define WLED_NUM_PINS (GPIO_PIN_COUNT+1) // somehow they forgot GPIO 16 (0-16==17)
|
||||
static uint32_t pinAlloc; // 1 bit per pin, we use first 17bits
|
||||
#else
|
||||
#define WLED_NUM_PINS (GPIO_PIN_COUNT)
|
||||
static uint64_t pinAlloc; // 1 bit per pin, we use 50 bits on ESP32-S3
|
||||
static uint16_t ledcAlloc; // up to 16 LEDC channels (WLED_MAX_ANALOG_CHANNELS)
|
||||
#endif
|
||||
static uint8_t i2cAllocCount; // allow multiple allocation of I2C bus pins but keep track of allocations
|
||||
static uint8_t spiAllocCount; // allow multiple allocation of SPI bus pins but keep track of allocations
|
||||
static PinOwner ownerTag[WLED_NUM_PINS];
|
||||
namespace PinManager {
|
||||
// De-allocates a single pin
|
||||
bool deallocatePin(byte gpio, PinOwner tag);
|
||||
// De-allocates multiple pins but only if all can be deallocated (PinOwner has to be specified)
|
||||
bool deallocateMultiplePins(const uint8_t *pinArray, byte arrayElementCount, PinOwner tag);
|
||||
bool deallocateMultiplePins(const managed_pin_type *pinArray, byte arrayElementCount, PinOwner tag);
|
||||
// Allocates a single pin, with an owner tag.
|
||||
// De-allocation requires the same owner tag (or override)
|
||||
bool allocatePin(byte gpio, bool output, PinOwner tag);
|
||||
// Allocates all the pins, or allocates none of the pins, with owner tag.
|
||||
// Provided to simplify error condition handling in clients
|
||||
// using more than one pin, such as I2C, SPI, rotary encoders,
|
||||
// ethernet, etc..
|
||||
bool allocateMultiplePins(const managed_pin_type * mptArray, byte arrayElementCount, PinOwner tag );
|
||||
|
||||
public:
|
||||
// De-allocates a single pin
|
||||
static bool deallocatePin(byte gpio, PinOwner tag);
|
||||
// De-allocates multiple pins but only if all can be deallocated (PinOwner has to be specified)
|
||||
static bool deallocateMultiplePins(const uint8_t *pinArray, byte arrayElementCount, PinOwner tag);
|
||||
static bool deallocateMultiplePins(const managed_pin_type *pinArray, byte arrayElementCount, PinOwner tag);
|
||||
// Allocates a single pin, with an owner tag.
|
||||
// De-allocation requires the same owner tag (or override)
|
||||
static bool allocatePin(byte gpio, bool output, PinOwner tag);
|
||||
// Allocates all the pins, or allocates none of the pins, with owner tag.
|
||||
// Provided to simplify error condition handling in clients
|
||||
// using more than one pin, such as I2C, SPI, rotary encoders,
|
||||
// ethernet, etc..
|
||||
static bool allocateMultiplePins(const managed_pin_type * mptArray, byte arrayElementCount, PinOwner tag );
|
||||
[[deprecated("Replaced by three-parameter allocatePin(gpio, output, ownerTag), for improved debugging")]]
|
||||
inline bool allocatePin(byte gpio, bool output = true) { return allocatePin(gpio, output, PinOwner::None); }
|
||||
[[deprecated("Replaced by two-parameter deallocatePin(gpio, ownerTag), for improved debugging")]]
|
||||
inline void deallocatePin(byte gpio) { deallocatePin(gpio, PinOwner::None); }
|
||||
|
||||
[[deprecated("Replaced by three-parameter allocatePin(gpio, output, ownerTag), for improved debugging")]]
|
||||
static inline bool allocatePin(byte gpio, bool output = true) { return allocatePin(gpio, output, PinOwner::None); }
|
||||
[[deprecated("Replaced by two-parameter deallocatePin(gpio, ownerTag), for improved debugging")]]
|
||||
static inline void deallocatePin(byte gpio) { deallocatePin(gpio, PinOwner::None); }
|
||||
// will return true for reserved pins
|
||||
bool isPinAllocated(byte gpio, PinOwner tag = PinOwner::None);
|
||||
// will return false for reserved pins
|
||||
bool isPinOk(byte gpio, bool output = true);
|
||||
|
||||
bool isReadOnlyPin(byte gpio);
|
||||
|
||||
// will return true for reserved pins
|
||||
static bool isPinAllocated(byte gpio, PinOwner tag = PinOwner::None);
|
||||
// will return false for reserved pins
|
||||
static bool isPinOk(byte gpio, bool output = true);
|
||||
|
||||
static bool isReadOnlyPin(byte gpio);
|
||||
PinOwner getPinOwner(byte gpio);
|
||||
|
||||
static PinOwner getPinOwner(byte gpio);
|
||||
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
static byte allocateLedc(byte channels);
|
||||
static void deallocateLedc(byte pos, byte channels);
|
||||
#endif
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
byte allocateLedc(byte channels);
|
||||
void deallocateLedc(byte pos, byte channels);
|
||||
#endif
|
||||
};
|
||||
|
||||
//extern PinManager pinManager;
|
||||
|
||||
@@ -61,7 +61,7 @@ int16_t loadPlaylist(JsonObject playlistObj, byte presetId) {
|
||||
if (playlistLen == 0) return -1;
|
||||
if (playlistLen > 100) playlistLen = 100;
|
||||
|
||||
playlistEntries = new PlaylistEntry[playlistLen];
|
||||
playlistEntries = new(std::nothrow) PlaylistEntry[playlistLen];
|
||||
if (playlistEntries == nullptr) return -1;
|
||||
|
||||
byte it = 0;
|
||||
|
||||
@@ -76,8 +76,8 @@ static void doSaveState() {
|
||||
// clean up
|
||||
saveLedmap = -1;
|
||||
presetToSave = 0;
|
||||
delete[] saveName;
|
||||
delete[] quickLoad;
|
||||
free(saveName);
|
||||
free(quickLoad);
|
||||
saveName = nullptr;
|
||||
quickLoad = nullptr;
|
||||
playlistSave = false;
|
||||
@@ -164,6 +164,11 @@ void handlePresets()
|
||||
|
||||
DEBUG_PRINTF_P(PSTR("Applying preset: %u\n"), (unsigned)tmpPreset);
|
||||
|
||||
#if defined(ARDUINO_ARCH_ESP32S3) || defined(ARDUINO_ARCH_ESP32S2) || defined(ARDUINO_ARCH_ESP32C3)
|
||||
unsigned long start = millis();
|
||||
while (strip.isUpdating() && millis() - start < FRAMETIME_FIXED) yield(); // wait for strip to finish updating, accessing FS during sendout causes glitches
|
||||
#endif
|
||||
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
if (tmpPreset==255 && tmpRAMbuffer!=nullptr) {
|
||||
deserializeJson(*pDoc,tmpRAMbuffer);
|
||||
@@ -211,8 +216,8 @@ void handlePresets()
|
||||
//called from handleSet(PS=) [network callback (sObj is empty), IR (irrational), deserializeState, UDP] and deserializeState() [network callback (filedoc!=nullptr)]
|
||||
void savePreset(byte index, const char* pname, JsonObject sObj)
|
||||
{
|
||||
if (!saveName) saveName = new char[33];
|
||||
if (!quickLoad) quickLoad = new char[9];
|
||||
if (!saveName) saveName = static_cast<char*>(malloc(33));
|
||||
if (!quickLoad) quickLoad = static_cast<char*>(malloc(9));
|
||||
if (!saveName || !quickLoad) return;
|
||||
|
||||
if (index == 0 || (index > 250 && index < 255)) return;
|
||||
@@ -258,8 +263,8 @@ void savePreset(byte index, const char* pname, JsonObject sObj)
|
||||
presetsModifiedTime = toki.second(); //unix time
|
||||
updateFSInfo();
|
||||
}
|
||||
delete[] saveName;
|
||||
delete[] quickLoad;
|
||||
free(saveName);
|
||||
free(quickLoad);
|
||||
saveName = nullptr;
|
||||
quickLoad = nullptr;
|
||||
} else {
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
#include "wled.h"
|
||||
#ifndef WLED_DISABLE_ESPNOW
|
||||
|
||||
#define ESPNOW_BUSWAIT_TIMEOUT 24 // one frame timeout to wait for bus to finish updating
|
||||
|
||||
#define NIGHT_MODE_DEACTIVATED -1
|
||||
#define NIGHT_MODE_BRIGHTNESS 5
|
||||
|
||||
@@ -38,6 +40,7 @@ typedef struct WizMoteMessageStructure {
|
||||
|
||||
static uint32_t last_seq = UINT32_MAX;
|
||||
static int brightnessBeforeNightMode = NIGHT_MODE_DEACTIVATED;
|
||||
static int16_t ESPNowButton = -1; // set in callback if new button value is received
|
||||
|
||||
// Pulled from the IR Remote logic but reduced to 10 steps with a constant of 3
|
||||
static const byte brightnessSteps[] = {
|
||||
@@ -121,6 +124,9 @@ static bool remoteJson(int button)
|
||||
|
||||
sprintf_P(objKey, PSTR("\"%d\":"), button);
|
||||
|
||||
unsigned long start = millis();
|
||||
while (strip.isUpdating() && millis()-start < ESPNOW_BUSWAIT_TIMEOUT) yield(); // wait for strip to finish updating, accessing FS during sendout causes glitches
|
||||
|
||||
// attempt to read command from remote.json
|
||||
readObjectFromFile(PSTR("/remote.json"), objKey, pDoc);
|
||||
JsonObject fdo = pDoc->as<JsonObject>();
|
||||
@@ -176,7 +182,7 @@ static bool remoteJson(int button)
|
||||
}
|
||||
|
||||
// Callback function that will be executed when data is received
|
||||
void handleRemote(uint8_t *incomingData, size_t len) {
|
||||
void handleWiZdata(uint8_t *incomingData, size_t len) {
|
||||
message_structure_t *incoming = reinterpret_cast<message_structure_t *>(incomingData);
|
||||
|
||||
if (strcmp(last_signal_src, linked_remote) != 0) {
|
||||
@@ -202,8 +208,15 @@ void handleRemote(uint8_t *incomingData, size_t len) {
|
||||
DEBUG_PRINT(F("] button: "));
|
||||
DEBUG_PRINTLN(incoming->button);
|
||||
|
||||
if (!remoteJson(incoming->button))
|
||||
switch (incoming->button) {
|
||||
ESPNowButton = incoming->button; // save state, do not process in callback (can cause glitches)
|
||||
last_seq = cur_seq;
|
||||
}
|
||||
|
||||
// process ESPNow button data (acesses FS, should not be called while update to avoid glitches)
|
||||
void handleRemote() {
|
||||
if(ESPNowButton >= 0) {
|
||||
if (!remoteJson(ESPNowButton))
|
||||
switch (ESPNowButton) {
|
||||
case WIZMOTE_BUTTON_ON : setOn(); break;
|
||||
case WIZMOTE_BUTTON_OFF : setOff(); break;
|
||||
case WIZMOTE_BUTTON_ONE : presetWithFallback(1, FX_MODE_STATIC, 0); break;
|
||||
@@ -219,9 +232,10 @@ void handleRemote(uint8_t *incomingData, size_t len) {
|
||||
case WIZ_SMART_BUTTON_BRIGHT_DOWN : brightnessDown(); break;
|
||||
default: break;
|
||||
}
|
||||
last_seq = cur_seq;
|
||||
}
|
||||
ESPNowButton = -1;
|
||||
}
|
||||
|
||||
#else
|
||||
void handleRemote(uint8_t *incomingData, size_t len) {}
|
||||
void handleRemote() {}
|
||||
#endif
|
||||
|
||||
@@ -134,8 +134,7 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
|
||||
strip.correctWB = request->hasArg(F("CCT"));
|
||||
strip.cctFromRgb = request->hasArg(F("CR"));
|
||||
cctICused = request->hasArg(F("IC"));
|
||||
strip.cctBlending = request->arg(F("CB")).toInt();
|
||||
Bus::setCCTBlend(strip.cctBlending);
|
||||
Bus::setCCTBlend(request->arg(F("CB")).toInt());
|
||||
Bus::setGlobalAWMode(request->arg(F("AW")).toInt());
|
||||
strip.setTargetFps(request->arg(F("FR")).toInt());
|
||||
useGlobalLedBuffer = request->hasArg(F("LD"));
|
||||
@@ -211,8 +210,7 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
|
||||
type |= request->hasArg(rf) << 7; // off refresh override
|
||||
// actual finalization is done in WLED::loop() (removing old busses and adding new)
|
||||
// this may happen even before this loop is finished so we do "doInitBusses" after the loop
|
||||
if (busConfigs[s] != nullptr) delete busConfigs[s];
|
||||
busConfigs[s] = new BusConfig(type, pins, start, length, colorOrder | (channelSwap<<4), request->hasArg(cv), skip, awmode, freq, useGlobalLedBuffer, maPerLed, maMax);
|
||||
busConfigs.push_back(std::move(BusConfig(type, pins, start, length, colorOrder | (channelSwap<<4), request->hasArg(cv), skip, awmode, freq, useGlobalLedBuffer, maPerLed, maMax)));
|
||||
busesChanged = true;
|
||||
}
|
||||
//doInitBusses = busesChanged; // we will do that below to ensure all input data is processed
|
||||
@@ -423,6 +421,14 @@ void handleSettingsSet(AsyncWebServerRequest *request, byte subPage)
|
||||
t = request->arg(F("WO")).toInt();
|
||||
if (t >= -255 && t <= 255) arlsOffset = t;
|
||||
|
||||
#ifdef WLED_ENABLE_DMX_INPUT
|
||||
dmxInputTransmitPin = request->arg(F("IDMT")).toInt();
|
||||
dmxInputReceivePin = request->arg(F("IDMR")).toInt();
|
||||
dmxInputEnablePin = request->arg(F("IDME")).toInt();
|
||||
dmxInputPort = request->arg(F("IDMP")).toInt();
|
||||
if(dmxInputPort <= 0 || dmxInputPort > 2) dmxInputPort = 2;
|
||||
#endif
|
||||
|
||||
#ifndef WLED_DISABLE_ALEXA
|
||||
alexaEnabled = request->hasArg(F("AL"));
|
||||
strlcpy(alexaInvocationName, request->arg(F("AI")).c_str(), 33);
|
||||
@@ -985,18 +991,18 @@ bool handleSet(AsyncWebServerRequest *request, const String& req, bool apply)
|
||||
//set color from HEX or 32bit DEC
|
||||
pos = req.indexOf(F("CL="));
|
||||
if (pos > 0) {
|
||||
colorFromDecOrHexString(colIn, (char*)req.substring(pos + 3).c_str());
|
||||
colorFromDecOrHexString(colIn, req.substring(pos + 3).c_str());
|
||||
col0Changed = true;
|
||||
}
|
||||
pos = req.indexOf(F("C2="));
|
||||
if (pos > 0) {
|
||||
colorFromDecOrHexString(colInSec, (char*)req.substring(pos + 3).c_str());
|
||||
colorFromDecOrHexString(colInSec, req.substring(pos + 3).c_str());
|
||||
col1Changed = true;
|
||||
}
|
||||
pos = req.indexOf(F("C3="));
|
||||
if (pos > 0) {
|
||||
byte tmpCol[4];
|
||||
colorFromDecOrHexString(tmpCol, (char*)req.substring(pos + 3).c_str());
|
||||
colorFromDecOrHexString(tmpCol, req.substring(pos + 3).c_str());
|
||||
col2 = RGBW32(tmpCol[0], tmpCol[1], tmpCol[2], tmpCol[3]);
|
||||
selseg.setColor(2, col2); // defined above (SS= or main)
|
||||
col2Changed = true;
|
||||
|
||||
@@ -206,7 +206,7 @@ void notify(byte callMode, bool followUp)
|
||||
notificationCount = followUp ? notificationCount + 1 : 0;
|
||||
}
|
||||
|
||||
void parseNotifyPacket(uint8_t *udpIn) {
|
||||
static void parseNotifyPacket(const uint8_t *udpIn) {
|
||||
//ignore notification if received within a second after sending a notification ourselves
|
||||
if (millis() - notificationSentTime < 1000) return;
|
||||
if (udpIn[1] > 199) return; //do not receive custom versions
|
||||
@@ -810,7 +810,7 @@ static size_t sequenceNumber = 0; // this needs to be shared across all ou
|
||||
static const size_t ART_NET_HEADER_SIZE = 12;
|
||||
static const byte ART_NET_HEADER[] PROGMEM = {0x41,0x72,0x74,0x2d,0x4e,0x65,0x74,0x00,0x00,0x50,0x00,0x0e};
|
||||
|
||||
uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, uint8_t *buffer, uint8_t bri, bool isRGBW) {
|
||||
uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, const uint8_t* buffer, uint8_t bri, bool isRGBW) {
|
||||
if (!(apActive || interfacesInited) || !client[0] || !length) return 1; // network not initialised or dummy/unset IP address 031522 ajn added check for ap
|
||||
|
||||
WiFiUDP ddpUdp;
|
||||
@@ -963,7 +963,7 @@ void espNowReceiveCB(uint8_t* address, uint8_t* data, uint8_t len, signed int rs
|
||||
|
||||
// handle WiZ Mote data
|
||||
if (data[0] == 0x91 || data[0] == 0x81 || data[0] == 0x80) {
|
||||
handleRemote(data, len);
|
||||
handleWiZdata(data, len);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
@@ -3,6 +3,9 @@
|
||||
* Registration and management utility for v2 usermods
|
||||
*/
|
||||
|
||||
static Usermod* ums[WLED_MAX_USERMODS] = {nullptr};
|
||||
byte UsermodManager::numMods = 0;
|
||||
|
||||
//Usermod Manager internals
|
||||
void UsermodManager::setup() { for (unsigned i = 0; i < numMods; i++) ums[i]->setup(); }
|
||||
void UsermodManager::connected() { for (unsigned i = 0; i < numMods; i++) ums[i]->connected(); }
|
||||
@@ -69,8 +72,6 @@ bool UsermodManager::add(Usermod* um)
|
||||
return true;
|
||||
}
|
||||
|
||||
Usermod* UsermodManager::ums[WLED_MAX_USERMODS] = {nullptr};
|
||||
byte UsermodManager::numMods = 0;
|
||||
|
||||
/* Usermod v2 interface shim for oappend */
|
||||
Print* Usermod::oappend_shim = nullptr;
|
||||
|
||||
@@ -242,6 +242,14 @@
|
||||
#include "../usermods/LD2410_v2/usermod_ld2410.h"
|
||||
#endif
|
||||
|
||||
#ifdef USERMOD_DEEP_SLEEP
|
||||
#include "../usermods/deep_sleep/usermod_deep_sleep.h"
|
||||
#endif
|
||||
|
||||
#ifdef USERMOD_RF433
|
||||
#include "../usermods/usermod_v2_RF433/usermod_v2_RF433.h"
|
||||
#endif
|
||||
|
||||
void registerUsermods()
|
||||
{
|
||||
/*
|
||||
@@ -470,4 +478,12 @@ void registerUsermods()
|
||||
#ifdef USERMOD_POV_DISPLAY
|
||||
UsermodManager::add(new PovDisplayUsermod());
|
||||
#endif
|
||||
|
||||
#ifdef USERMOD_DEEP_SLEEP
|
||||
UsermodManager::add(new DeepSleepUsermod());
|
||||
#endif
|
||||
|
||||
#ifdef USERMOD_RF433
|
||||
UsermodManager::add(new RF433Usermod());
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -73,7 +73,7 @@ bool getVal(JsonVariant elem, byte* val, byte vmin, byte vmax) {
|
||||
}
|
||||
|
||||
|
||||
bool getBoolVal(JsonVariant elem, bool dflt) {
|
||||
bool getBoolVal(const JsonVariant &elem, bool dflt) {
|
||||
if (elem.is<const char*>() && elem.as<const char*>()[0] == 't') {
|
||||
return !dflt;
|
||||
} else {
|
||||
@@ -151,7 +151,7 @@ bool isAsterisksOnly(const char* str, byte maxLen)
|
||||
|
||||
|
||||
//threading/network callback details: https://github.com/Aircoookie/WLED/pull/2336#discussion_r762276994
|
||||
bool requestJSONBufferLock(uint8_t module)
|
||||
bool requestJSONBufferLock(uint8_t moduleID)
|
||||
{
|
||||
if (pDoc == nullptr) {
|
||||
DEBUG_PRINTLN(F("ERROR: JSON buffer not allocated!"));
|
||||
@@ -175,14 +175,14 @@ bool requestJSONBufferLock(uint8_t module)
|
||||
#endif
|
||||
// If the lock is still held - by us, or by another task
|
||||
if (jsonBufferLock) {
|
||||
DEBUG_PRINTF_P(PSTR("ERROR: Locking JSON buffer (%d) failed! (still locked by %d)\n"), module, jsonBufferLock);
|
||||
DEBUG_PRINTF_P(PSTR("ERROR: Locking JSON buffer (%d) failed! (still locked by %d)\n"), moduleID, jsonBufferLock);
|
||||
#ifdef ARDUINO_ARCH_ESP32
|
||||
xSemaphoreGiveRecursive(jsonBufferLockMutex);
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
|
||||
jsonBufferLock = module ? module : 255;
|
||||
jsonBufferLock = moduleID ? moduleID : 255;
|
||||
DEBUG_PRINTF_P(PSTR("JSON buffer locked. (%d)\n"), jsonBufferLock);
|
||||
pDoc->clear();
|
||||
return true;
|
||||
@@ -265,16 +265,16 @@ uint8_t extractModeSlider(uint8_t mode, uint8_t slider, char *dest, uint8_t maxL
|
||||
if (mode < strip.getModeCount()) {
|
||||
String lineBuffer = FPSTR(strip.getModeData(mode));
|
||||
if (lineBuffer.length() > 0) {
|
||||
unsigned start = lineBuffer.indexOf('@');
|
||||
unsigned stop = lineBuffer.indexOf(';', start);
|
||||
int start = lineBuffer.indexOf('@'); // String::indexOf() returns an int, not an unsigned; -1 means "not found"
|
||||
int stop = lineBuffer.indexOf(';', start);
|
||||
if (start>0 && stop>0) {
|
||||
String names = lineBuffer.substring(start, stop); // include @
|
||||
unsigned nameBegin = 1, nameEnd, nameDefault;
|
||||
int nameBegin = 1, nameEnd, nameDefault;
|
||||
if (slider < 10) {
|
||||
for (size_t i=0; i<=slider; i++) {
|
||||
const char *tmpstr;
|
||||
dest[0] = '\0'; //clear dest buffer
|
||||
if (nameBegin == 0) break; // there are no more names
|
||||
if (nameBegin <= 0) break; // there are no more names
|
||||
nameEnd = names.indexOf(',', nameBegin);
|
||||
if (i == slider) {
|
||||
nameDefault = names.indexOf('=', nameBegin); // find default value
|
||||
@@ -470,7 +470,7 @@ um_data_t* simulateSound(uint8_t simulationId)
|
||||
for (int i = 0; i<16; i++)
|
||||
fftResult[i] = beatsin8_t(120 / (i+1), 0, 255);
|
||||
// fftResult[i] = (beatsin8_t(120, 0, 255) + (256/16 * i)) % 256;
|
||||
volumeSmth = fftResult[8];
|
||||
volumeSmth = fftResult[8];
|
||||
break;
|
||||
case UMS_WeWillRockYou:
|
||||
if (ms%2000 < 200) {
|
||||
@@ -507,7 +507,7 @@ um_data_t* simulateSound(uint8_t simulationId)
|
||||
case UMS_10_13:
|
||||
for (int i = 0; i<16; i++)
|
||||
fftResult[i] = inoise8(beatsin8_t(90 / (i+1), 0, 200)*15 + (ms>>10), ms>>3);
|
||||
volumeSmth = fftResult[8];
|
||||
volumeSmth = fftResult[8];
|
||||
break;
|
||||
case UMS_14_3:
|
||||
for (int i = 0; i<16; i++)
|
||||
@@ -538,7 +538,7 @@ void enumerateLedmaps() {
|
||||
|
||||
#ifndef ESP8266
|
||||
if (ledmapNames[i-1]) { //clear old name
|
||||
delete[] ledmapNames[i-1];
|
||||
free(ledmapNames[i-1]);
|
||||
ledmapNames[i-1] = nullptr;
|
||||
}
|
||||
#endif
|
||||
@@ -556,7 +556,7 @@ void enumerateLedmaps() {
|
||||
const char *name = root["n"].as<const char*>();
|
||||
if (name != nullptr) len = strlen(name);
|
||||
if (len > 0 && len < 33) {
|
||||
ledmapNames[i-1] = new char[len+1];
|
||||
ledmapNames[i-1] = static_cast<char*>(malloc(len+1));
|
||||
if (ledmapNames[i-1]) strlcpy(ledmapNames[i-1], name, 33);
|
||||
}
|
||||
}
|
||||
@@ -564,7 +564,7 @@ void enumerateLedmaps() {
|
||||
char tmp[33];
|
||||
snprintf_P(tmp, 32, s_ledmap_tmpl, i);
|
||||
len = strlen(tmp);
|
||||
ledmapNames[i-1] = new char[len+1];
|
||||
ledmapNames[i-1] = static_cast<char*>(malloc(len+1));
|
||||
if (ledmapNames[i-1]) strlcpy(ledmapNames[i-1], tmp, 33);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -65,7 +65,10 @@ void WLED::loop()
|
||||
handleNotifications();
|
||||
handleTransitions();
|
||||
#ifdef WLED_ENABLE_DMX
|
||||
handleDMX();
|
||||
handleDMXOutput();
|
||||
#endif
|
||||
#ifdef WLED_ENABLE_DMX_INPUT
|
||||
dmxInput.update();
|
||||
#endif
|
||||
|
||||
#ifdef WLED_DEBUG
|
||||
@@ -84,6 +87,9 @@ void WLED::loop()
|
||||
#ifndef WLED_DISABLE_INFRARED
|
||||
handleIR();
|
||||
#endif
|
||||
#ifndef WLED_DISABLE_ESPNOW
|
||||
handleRemote();
|
||||
#endif
|
||||
#ifndef WLED_DISABLE_ALEXA
|
||||
handleAlexa();
|
||||
#endif
|
||||
@@ -485,7 +491,10 @@ void WLED::setup()
|
||||
}
|
||||
#endif
|
||||
#ifdef WLED_ENABLE_DMX
|
||||
initDMX();
|
||||
initDMXOutput();
|
||||
#endif
|
||||
#ifdef WLED_ENABLE_DMX_INPUT
|
||||
dmxInput.init(dmxInputReceivePin, dmxInputTransmitPin, dmxInputEnablePin, dmxInputPort);
|
||||
#endif
|
||||
|
||||
#ifdef WLED_ENABLE_ADALIGHT
|
||||
@@ -737,7 +746,6 @@ int8_t WLED::findWiFi(bool doScan) {
|
||||
void WLED::initConnection()
|
||||
{
|
||||
DEBUG_PRINTF_P(PSTR("initConnection() called @ %lus.\n"), millis()/1000);
|
||||
|
||||
#ifdef WLED_ENABLE_WEBSOCKETS
|
||||
ws.onEvent(wsEvent);
|
||||
#endif
|
||||
@@ -766,6 +774,7 @@ void WLED::initConnection()
|
||||
if (!WLED_WIFI_CONFIGURED) {
|
||||
DEBUG_PRINTLN(F("No connection configured."));
|
||||
if (!apActive) initAP(); // instantly go to ap mode
|
||||
return;
|
||||
} else if (!apActive) {
|
||||
if (apBehavior == AP_BEHAVIOR_ALWAYS) {
|
||||
DEBUG_PRINTLN(F("Access point ALWAYS enabled."));
|
||||
|
||||
@@ -144,6 +144,10 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef WLED_ENABLE_DMX_INPUT
|
||||
#include "dmx_input.h"
|
||||
#endif
|
||||
|
||||
#include "src/dependencies/e131/ESPAsyncE131.h"
|
||||
#ifndef WLED_DISABLE_MQTT
|
||||
#include "src/dependencies/async-mqtt-client/AsyncMqttClient.h"
|
||||
@@ -269,7 +273,7 @@ using PSRAMDynamicJsonDocument = BasicJsonDocument<PSRAM_Allocator>;
|
||||
// Global Variable definitions
|
||||
WLED_GLOBAL char versionString[] _INIT(TOSTRING(WLED_VERSION));
|
||||
WLED_GLOBAL char releaseString[] _INIT(WLED_RELEASE_NAME); // must include the quotes when defining, e.g -D WLED_RELEASE_NAME=\"ESP32_MULTI_USREMODS\"
|
||||
#define WLED_CODENAME "Kōsen"
|
||||
#define WLED_CODENAME "Niji"
|
||||
|
||||
// AP and OTA default passwords (for maximum security change them!)
|
||||
WLED_GLOBAL char apPass[65] _INIT(WLED_AP_PASS);
|
||||
@@ -462,7 +466,15 @@ WLED_GLOBAL bool arlsForceMaxBri _INIT(false); // enable to f
|
||||
WLED_GLOBAL uint16_t DMXStart _INIT(10); // start address of the first fixture
|
||||
WLED_GLOBAL uint16_t DMXStartLED _INIT(0); // LED from which DMX fixtures start
|
||||
#endif
|
||||
WLED_GLOBAL uint16_t e131Universe _INIT(1); // settings for E1.31 (sACN) protocol (only DMX_MODE_MULTIPLE_* can span over consecutive universes)
|
||||
#ifdef WLED_ENABLE_DMX_INPUT
|
||||
WLED_GLOBAL int dmxInputTransmitPin _INIT(0);
|
||||
WLED_GLOBAL int dmxInputReceivePin _INIT(0);
|
||||
WLED_GLOBAL int dmxInputEnablePin _INIT(0);
|
||||
WLED_GLOBAL int dmxInputPort _INIT(2);
|
||||
WLED_GLOBAL DMXInput dmxInput;
|
||||
#endif
|
||||
|
||||
WLED_GLOBAL uint16_t e131Universe _INIT(1); // settings for E1.31 (sACN) protocol (only DMX_MODE_MULTIPLE_* can span over consequtive universes)
|
||||
WLED_GLOBAL uint16_t e131Port _INIT(5568); // DMX in port. E1.31 default is 5568, Art-Net is 6454
|
||||
WLED_GLOBAL byte e131Priority _INIT(0); // E1.31 port priority (if != 0 priority handling is active)
|
||||
WLED_GLOBAL E131Priority highPriority _INIT(3); // E1.31 highest priority tracking, init = timeout in seconds
|
||||
@@ -485,10 +497,10 @@ WLED_GLOBAL unsigned long lastMqttReconnectAttempt _INIT(0); // used for other
|
||||
#endif
|
||||
WLED_GLOBAL AsyncMqttClient *mqtt _INIT(NULL);
|
||||
WLED_GLOBAL bool mqttEnabled _INIT(false);
|
||||
WLED_GLOBAL char mqttStatusTopic[40] _INIT(""); // this must be global because of async handlers
|
||||
WLED_GLOBAL char mqttDeviceTopic[MQTT_MAX_TOPIC_LEN+1] _INIT(""); // main MQTT topic (individual per device, default is wled/mac)
|
||||
WLED_GLOBAL char mqttGroupTopic[MQTT_MAX_TOPIC_LEN+1] _INIT("wled/all"); // second MQTT topic (for example to group devices)
|
||||
WLED_GLOBAL char mqttServer[MQTT_MAX_SERVER_LEN+1] _INIT(""); // both domains and IPs should work (no SSL)
|
||||
WLED_GLOBAL char mqttStatusTopic[MQTT_MAX_TOPIC_LEN + 8] _INIT(""); // this must be global because of async handlers
|
||||
WLED_GLOBAL char mqttDeviceTopic[MQTT_MAX_TOPIC_LEN + 1] _INIT(""); // main MQTT topic (individual per device, default is wled/mac)
|
||||
WLED_GLOBAL char mqttGroupTopic[MQTT_MAX_TOPIC_LEN + 1] _INIT("wled/all"); // second MQTT topic (for example to group devices)
|
||||
WLED_GLOBAL char mqttServer[MQTT_MAX_SERVER_LEN + 1] _INIT(""); // both domains and IPs should work (no SSL)
|
||||
WLED_GLOBAL char mqttUser[41] _INIT(""); // optional: username for MQTT auth
|
||||
WLED_GLOBAL char mqttPass[65] _INIT(""); // optional: password for MQTT auth
|
||||
WLED_GLOBAL char mqttClientID[41] _INIT(""); // override the client ID
|
||||
@@ -885,7 +897,7 @@ WLED_GLOBAL bool e131NewData _INIT(false);
|
||||
// led fx library object
|
||||
WLED_GLOBAL BusManager busses _INIT(BusManager());
|
||||
WLED_GLOBAL WS2812FX strip _INIT(WS2812FX());
|
||||
WLED_GLOBAL BusConfig* busConfigs[WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES] _INIT({nullptr}); //temporary, to remember values from network callback until after
|
||||
WLED_GLOBAL std::vector<BusConfig> busConfigs; //temporary, to remember values from network callback until after
|
||||
WLED_GLOBAL bool doInitBusses _INIT(false);
|
||||
WLED_GLOBAL int8_t loadLedmap _INIT(-1);
|
||||
WLED_GLOBAL uint8_t currentLedmap _INIT(0);
|
||||
@@ -898,9 +910,6 @@ WLED_GLOBAL uint32_t ledMaps _INIT(0); // bitfield representation of available l
|
||||
WLED_GLOBAL uint16_t ledMaps _INIT(0); // bitfield representation of available ledmaps
|
||||
#endif
|
||||
|
||||
// Usermod manager
|
||||
WLED_GLOBAL UsermodManager usermods _INIT(UsermodManager());
|
||||
|
||||
// global I2C SDA pin (used for usermods)
|
||||
#ifndef I2CSDAPIN
|
||||
WLED_GLOBAL int8_t i2c_sda _INIT(-1);
|
||||
|
||||
4
wled00/wled_eeprom.cpp
Executable file → Normal file
4
wled00/wled_eeprom.cpp
Executable file → Normal file
@@ -2,6 +2,10 @@
|
||||
#include <EEPROM.h>
|
||||
#include "wled.h"
|
||||
|
||||
#if defined(WLED_ENABLE_MQTT) && MQTT_MAX_TOPIC_LEN < 32
|
||||
#error "MQTT topics length < 32 is not supported by the EEPROM module!"
|
||||
#endif
|
||||
|
||||
/*
|
||||
* DEPRECATED, do not use for new settings
|
||||
* Only used to restore config from pre-0.11 installations using the deEEP() methods
|
||||
|
||||
@@ -113,8 +113,8 @@ void handleSerial()
|
||||
//only send response if TX pin is unused for other purposes
|
||||
if (verboseResponse && serialCanTX) {
|
||||
pDoc->clear();
|
||||
JsonObject state = pDoc->createNestedObject("state");
|
||||
serializeState(state);
|
||||
JsonObject stateDoc = pDoc->createNestedObject("state");
|
||||
serializeState(stateDoc);
|
||||
JsonObject info = pDoc->createNestedObject("info");
|
||||
serializeInfo(info);
|
||||
|
||||
|
||||
@@ -21,7 +21,7 @@ static const char s_accessdenied[] PROGMEM = "Access Denied";
|
||||
static const char _common_js[] PROGMEM = "/common.js";
|
||||
|
||||
//Is this an IP?
|
||||
static bool isIp(String str) {
|
||||
static bool isIp(const String &str) {
|
||||
for (size_t i = 0; i < str.length(); i++) {
|
||||
int c = str.charAt(i);
|
||||
if (c != '.' && (c < '0' || c > '9')) {
|
||||
@@ -152,9 +152,9 @@ static String msgProcessor(const String& var)
|
||||
return String();
|
||||
}
|
||||
|
||||
static void handleUpload(AsyncWebServerRequest *request, const String& filename, size_t index, uint8_t *data, size_t len, bool final) {
|
||||
static void handleUpload(AsyncWebServerRequest *request, const String& filename, size_t index, uint8_t *data, size_t len, bool isFinal) {
|
||||
if (!correctPIN) {
|
||||
if (final) request->send(401, FPSTR(CONTENT_TYPE_PLAIN), FPSTR(s_unlock_cfg));
|
||||
if (isFinal) request->send(401, FPSTR(CONTENT_TYPE_PLAIN), FPSTR(s_unlock_cfg));
|
||||
return;
|
||||
}
|
||||
if (!index) {
|
||||
@@ -170,7 +170,7 @@ static void handleUpload(AsyncWebServerRequest *request, const String& filename,
|
||||
if (len) {
|
||||
request->_tempFile.write(data,len);
|
||||
}
|
||||
if (final) {
|
||||
if (isFinal) {
|
||||
request->_tempFile.close();
|
||||
if (filename.indexOf(F("cfg.json")) >= 0) { // check for filename with or without slash
|
||||
doReboot = true;
|
||||
@@ -359,7 +359,7 @@ void initServer()
|
||||
|
||||
server.on(F("/upload"), HTTP_POST, [](AsyncWebServerRequest *request) {},
|
||||
[](AsyncWebServerRequest *request, const String& filename, size_t index, uint8_t *data,
|
||||
size_t len, bool final) {handleUpload(request, filename, index, data, len, final);}
|
||||
size_t len, bool isFinal) {handleUpload(request, filename, index, data, len, isFinal);}
|
||||
);
|
||||
|
||||
createEditHandler(correctPIN);
|
||||
@@ -389,7 +389,7 @@ void initServer()
|
||||
serveMessage(request, 200, F("Update successful!"), F("Rebooting..."), 131);
|
||||
doReboot = true;
|
||||
}
|
||||
},[](AsyncWebServerRequest *request, String filename, size_t index, uint8_t *data, size_t len, bool final){
|
||||
},[](AsyncWebServerRequest *request, String filename, size_t index, uint8_t *data, size_t len, bool isFinal){
|
||||
if (!correctPIN || otaLock) return;
|
||||
if(!index){
|
||||
DEBUG_PRINTLN(F("OTA Update Start"));
|
||||
@@ -406,7 +406,7 @@ void initServer()
|
||||
Update.begin((ESP.getFreeSketchSpace() - 0x1000) & 0xFFFFF000);
|
||||
}
|
||||
if(!Update.hasError()) Update.write(data, len);
|
||||
if(final){
|
||||
if(isFinal){
|
||||
if(Update.end(true)){
|
||||
DEBUG_PRINTLN(F("Update Success"));
|
||||
} else {
|
||||
|
||||
@@ -26,7 +26,7 @@ void XML_response(Print& dest)
|
||||
);
|
||||
}
|
||||
|
||||
static void extractPin(Print& settingsScript, JsonObject &obj, const char *key) {
|
||||
static void extractPin(Print& settingsScript, const JsonObject &obj, const char *key) {
|
||||
if (obj[key].is<JsonArray>()) {
|
||||
JsonArray pins = obj[key].as<JsonArray>();
|
||||
for (JsonVariant pv : pins) {
|
||||
@@ -38,7 +38,7 @@ static void extractPin(Print& settingsScript, JsonObject &obj, const char *key)
|
||||
}
|
||||
|
||||
// print used pins by scanning JsonObject (1 level deep)
|
||||
static void fillUMPins(Print& settingsScript, JsonObject &mods)
|
||||
static void fillUMPins(Print& settingsScript, const JsonObject &mods)
|
||||
{
|
||||
for (JsonPair kv : mods) {
|
||||
// kv.key() is usermod name or subobject key
|
||||
@@ -285,7 +285,7 @@ void getSettingsJS(byte subPage, Print& settingsScript)
|
||||
printSetFormCheckbox(settingsScript,PSTR("CCT"),strip.correctWB);
|
||||
printSetFormCheckbox(settingsScript,PSTR("IC"),cctICused);
|
||||
printSetFormCheckbox(settingsScript,PSTR("CR"),strip.cctFromRgb);
|
||||
printSetFormValue(settingsScript,PSTR("CB"),strip.cctBlending);
|
||||
printSetFormValue(settingsScript,PSTR("CB"),Bus::getCCTBlend());
|
||||
printSetFormValue(settingsScript,PSTR("FR"),strip.getTargetFps());
|
||||
printSetFormValue(settingsScript,PSTR("AW"),Bus::getGlobalAWMode());
|
||||
printSetFormCheckbox(settingsScript,PSTR("LD"),useGlobalLedBuffer);
|
||||
@@ -437,6 +437,18 @@ void getSettingsJS(byte subPage, Print& settingsScript)
|
||||
printSetFormCheckbox(settingsScript,PSTR("ES"),e131SkipOutOfSequence);
|
||||
printSetFormCheckbox(settingsScript,PSTR("EM"),e131Multicast);
|
||||
printSetFormValue(settingsScript,PSTR("EU"),e131Universe);
|
||||
#ifdef WLED_ENABLE_DMX
|
||||
settingsScript.print(SET_F("hideNoDMX();")); // hide "not compiled in" message
|
||||
#endif
|
||||
#ifndef WLED_ENABLE_DMX_INPUT
|
||||
settingsScript.print(SET_F("hideDMXInput();")); // hide "dmx input" settings
|
||||
#else
|
||||
settingsScript.print(SET_F("hideNoDMXInput();")); //hide "not compiled in" message
|
||||
printSetFormValue(settingsScript,SET_F("IDMT"),dmxInputTransmitPin);
|
||||
printSetFormValue(settingsScript,SET_F("IDMR"),dmxInputReceivePin);
|
||||
printSetFormValue(settingsScript,SET_F("IDME"),dmxInputEnablePin);
|
||||
printSetFormValue(settingsScript,SET_F("IDMP"),dmxInputPort);
|
||||
#endif
|
||||
printSetFormValue(settingsScript,PSTR("DA"),DMXAddress);
|
||||
printSetFormValue(settingsScript,PSTR("XX"),DMXSegmentSpacing);
|
||||
printSetFormValue(settingsScript,PSTR("PY"),e131Priority);
|
||||
|
||||
Reference in New Issue
Block a user